Biochemical reaction networks: gene regulation, signaling, metabolism, ...
Processing information to coordinate activity

regulatory & signaling networks as information processing systems

coordinating the processing of matter and energy
Stochastic cells: simple dimerization reaction

- simple dimerization reaction
 - homodimerization: $M + M \rightleftharpoons D$
 - as distinct from heterodimerization: $A + B \rightleftharpoons AB$
- introduce Petri net representation
 - places (circles): molecular species
 - transitions (rectangles): chemical reactions, parameterized by rate constants
 - arcs (directed segments): stoichiometric weights
Stochastic cells: simple dimerization reaction

- compare stochastic and deterministic simulations
 - deterministic
 - \(\frac{dy}{dt} = f(y; k_b, k_u); y = (M, D) \)
 - stochastic
 - Gillespie algorithm

Petri net for \(M+M \leftrightarrow D \)

Stochastic vs. deterministic simulation
Chemical master equation

- differential equation describing the dynamics of the probabilities of all microstates in a system
- \(P(m,d) \) = probability of having \(m \) Monomers and \(d \) Dimers
- linear equation in a combinatorially large state space

\[
\frac{dP(m,d)}{dt} = [k_b(m)(m-1)]P(m+2,d-1) - [k_b(m)(m-1)]P(m,d) + [k_u(d+1)]P(m-2,d+1) - [k_u(d)]P(m,d)
\]
Gillespie algorithm

- Gillespie’s “Direct Method”, a.k.a. continuous time Monte Carlo
- a stochastic method for simulating reaction dynamics
 - exact sampling of distribution represented by master equation
 - pick at random a reaction to occur next, and a time at which it will occur (consistent with reaction rates)

\[M + M \rightarrow D: k_b [M] ([M]-1) \]

\[D \rightarrow M + M: k_u [D] \]

Total rate \(\Gamma = k_b [M] ([M]-1) + k_u [D] \)

Next reaction drawn uniformly from weighted rates

Next reaction time \(t_{\text{wait}} \) drawn from probability distribution \(\rho(t) = \Gamma \exp(-\Gamma t) \)
The Repressilator

- Repressilator
- Repressor Oscillator
 - engineered synthetic system encoded on a plasmid (introduced into *E. coli*)
 - oscillatory mRNA/protein dynamics from mutually repressing proteins
 - TetR inhibits λ cl inhibits Lacl inhibits TetR (rock-paper-scissors)
- paper describes both experimental system and mathematical models
 - ODE-based model
 - stochastic, reaction-based model
A simple deterministic model

\[
\frac{dm_i}{dt} = -m_i + \frac{\alpha}{1 + \rho_j^n} + \alpha_0 \\
\frac{d\rho_i}{dt} = -\beta(\rho_i - m_i)
\]

- mRNA synthesized and degraded
 - synthesis has part that depends on relevant repressor concentration (Hill function), and part that represents “leaky” transcription
- protein synthesized and degraded
- time rescaled in units of mRNA lifetime; protein concentrations in units of K_M; mRNA concentrations in units of their translation efficiency
A more complex Repressilator reaction network

Hill function in limit that P_1 unbinding much faster than P_2 unbinding
Dynamics of the stochastic Repressilator

TetR repression by LacI: modeling via Petri nets

- TetR (mRNA)
- TetR (protein)
- LacI
- \(P_0^{tetR} \)
- \(P_1^{tetR} \)
- \(P_2^{tetR} \)

Binding (A, B, C, \(k_b \))
A + B \(\rightarrow \) C; rate = \(k_b \) [A][B]

Unbinding (C, A, B, \(k_u \))
C \(\rightarrow \) A + B; rate = \(k_u \) [C]

CatalyzedSynthesis (C, P, \(\gamma_m \))
C \(\rightarrow \) C + P; rate = \(\gamma_m \) [C]
(transcription)

CatalyzedSynthesis (C, P, \(\gamma_p \))
C \(\rightarrow \) C + P; rate = \(\gamma_p \) [C]
(translation)

Degradation (C, \(k_d \))
C \(\rightarrow \) \emptyset; rate = \(k_d \) [C]
Noise in the Repressilator

- **shot noise**
 - fluctuations due to fact that chemical numbers are discrete and potentially small

- **telegraph noise**
 - fluctuations due to fact that some states (e.g., promoter bound by protein) are either on or off

- can scale parameters in model to accentuate or diminish different types of noise

mRNA

protein
Infectious Disease Models

- SIR model
 - Susceptible-Infectious-Recovered
 - infection: S+I → I+I
 - recovery: I → R