Computational Methods for Nonlinear Systems

- Graduate computational science laboratory course developed by Myers & Sethna
 - lectures are minimal
 - class work focused on self-paced implementation of computer programs from hints and skeletal code
- Developed originally to support Cornell IGERT program in nonlinear systems
 - graduate fellowship program supporting interdisciplinary group of students
 - a Core Course in graduate Computational Science & Engineering (CSE) minor
- Hands-on introduction to scientific computing, algorithms, programming, and simulation techniques
 - in the context of IGERT focal themes: complex networks, biolocomotion & manipulation, pattern formation, and gene regulation
 - also includes: statistical mechanics, chaos in nonlinear systems, molecular dynamics, random matrix theory, constraint satisfaction, etc.
- Most exercises incorporated into Sethna’s textbook, “Statistical Mechanics: Entropy, Order Parameters, and Complexity”
Programming

- all programming done in Python (www.python.org)
 - 3rd party Python libraries for numerics, graphics, visualization, etc.
 - e.g., NumPy, SciPy, pylab, Python Imaging Library
- course hints files provide documented code fragments to be fleshed out by students
- graphical tools provided to give immediate feedback, help debug, etc.
- why Python?
 - interpreted: rapid program development and interactive access
 - built-in data structures & high-level syntax
 - rich standard library and 3rd party libraries (for science, visualization, databases, internet programming, etc.)
 - supports procedural programming, object-oriented programming, functional programming, scripting, large systems
 - free software (monetarily and intellectually)
Course modules

- Small-world networks
- Invariant measure
- Cardiac dynamics
- NP-completeness
- Percolation
- Chaos & Lyapunov
- Random matrix theory
- Ising model
- Pendulum
- Fractal dimensions
- Stochastic cells
- Molecular dynamics
- Walker
- Period doubling
- Repressilator
- plus a few others
Small-world networks

- **Science**
 - small world networks (Watts & Strogatz)
 - “six degrees of separation”
 - shortest path lengths in randomly wired graphs
- **Computing**
 - data structure for undirected graphs
 - good introduction to built-in Python containers (lists and dictionaries)
 - object-oriented encapsulation of complex data structures
 - graph traversal algorithms (breadth-first search) for shortest path and betweenness
 - simple graph visualization software supports debugging and provides quick feedback
Percolation

• Science
 - statistical mechanics of percolation
 ▸ connected clusters in randomly wired graphs (e.g., bond percolation on a lattice)
 ▸ universality of phase transitions

• Computing
 - reuse of objects with generic interface
 (reuse of UndirectedGraph class from small-world network module)
 - graph traversal algorithms (breadth-first search) for cluster finding
 - scaling collapses
Walker

- **Science**
 - Simple model of bipedal walker (Ruina and coworkers)
 - double pendulum with impulse for heelstrike
 - single pendulum as warmup
 - period-doubling bifurcations in physical system

- **Computing**
 - integration of ODEs
 - finite differences, time-step dependence, integration schemes (stability, fidelity, accuracy)
 - calling 3rd party numerical libraries
 - change of integration variables for event detection (heelstrike)
 - tracking unstable periodic orbit
 - visualization tools for animation
Maps & dynamical systems

- **Science**
 - bifurcations and chaos in iterated maps
 - period doubling in logistic map
 - density (invariant measure) in chaotic regime
 - Lyapunov exponents: divergence of nearby trajectories
 - fractal dimensions of attractors
 - renormalization group of logistic map & universality of period doubling route to chaos

- **Computing**
 - iterating maps
 - root-finding
 - fitting
Cardiac dynamics

- **Science**
 - pattern formation in excitable medium
 - FitzHugh-Nagumo model (type of reaction-diffusion equation)
 - spiral defects forming in electrical pulsing can lead to cardiac arrhythmias
 - model extensions to simulate dead tissue, cardiac chambers, etc.

- **Computing**
 - numerical solution of PDEs
 - finite-differences, operator stencils
 - nullcline analysis for single cell (root-finding)
 - simple animation tool allows interactive steering of simulation (needed to provide targeted electrical pulses and “defibrillator” shock)
Cell dynamics: stochastic cells and Repressilator

• Science
 - Repressilator (Elowitz & Leibler): genetic oscillator from realm of synthetic biology
 ‣ oscillatory mRNA/protein dynamics from mutually repressing proteins
 - telegraph noise and shotgun noise in stochastic systems
• Computing
 - chemical kinetics and reaction networks
 ‣ Petri nets
 ‣ synthesis of aggregate kinetic equations from network
 - Monte Carlo algorithms (Gillespie)
 - stochastic vs. deterministic descriptions
• Additional projects exploring other gene regulatory networks (switches, feed-forward loops, etc.)
NP-completeness & constraint satisfaction

- Science
 - NP-complete problems
 - phase transitions in 3SAT and parametric complexity
 - integer partitioning problem

- Computing
 - algorithms for NP-complete problems
 - backtracking, recursion
Random matrix theory

• Science
 - eigenvalue spacings in random matrices
 - developed originally to describe energy level spacings in quantum systems

• Computing
 - random matrix generation
 - eigenvalue computation (numpy)
Molecular dynamics

- Science
 - thermodynamics: emergence of effective properties from molecular chaos

- Computing
 - design of large software systems
 - geometric data structures
 - integration of ODEs
 - thermodynamics
 - pressure
 - pair distribution functions
Ising model

- Science
 - phase transitions in simple model of magnetic system
 - nucleation
 - self-similarity
 - fluctuation-dissipation

- Computing
 - Monte Carlo algorithms
 - heat bath
 - Metropolis
 - cluster flipping
Randomness: random walks & Gumbel distributions

• Science
 - ensembles and distributions
 ▸ averages
 ▸ extremal behavior
 ▸ emergent symmetries

• Computing
 - random number generation
 - statistical analysis of ensembles
Motion capture and data-driven dynamical systems

A new group project to be fleshed out in collaboration with John Guckenheimer and Madhu Venkadesan

- **Science**
 - data-driven dynamical systems
 - attractor reconstruction
 - model inference
 - control
 - connections to biolocomotion

- **Computing**
 - interfacing to hardware
 - analyzing noisy experimental data
 - integrating ODEs
Working with course modules

- Course web page
 - www.physics.cornell.edu/~myers/teaching/ComputationalMethods
- Module web pages
 - www.physics.cornell.edu/~myers/teaching/ComputationalMethods/ComputerExercises
 - linked from “Computer Exercises and Hints” on course web page
- For a given module:
 - download (and print out, if desired) “Exercise” pdf file (e.g., Small World Exercise)
 - download “Hints” file and save to disk (e.g., SmallWorldNetworksHints.py)
 - copy “Hints” file to working file
 - e.g., cp SmallWorldNetworksHints.py SmallWorldNetworks.py
 - edit working file
 - e.g., emacs SmallWorldNetworks.py
 - read exercise file and comments in working/hints file
 - remove Python instruction “pass” and fill in body of code to implement exercise
 - start up ipython interpreter
 - run the module (e.g., %run SmallWorldNetworks.py)
Important third-party Python modules

- NumPy (Numerical Python) [www.scipy.org/NumPy]
 - grew from a merger of Numeric and numarray; converging toward version 1.0
 - provides (in a compiled library) high-level array syntax, linear algebra, random number generation, Fourier transforms

- SciPy [www.scipy.org]
 - Python interfaces to well-tested compiled numerical routines, interfaced to work with NumPy arrays
 - provides routines for integration of functions and differential equations, root-finding, minimization, etc.

- pylab (a.k.a. matplotlib) [matplotlib.sourceforge.net]
 - provides 2D (x-y) plotting, histograms, etc.

- Python Imaging Library (PIL) [www.pythonware.com]
 - image creation and manipulation
 - forms the basis of several course visualization modules

- ipython [ipython.scipy.org]
 - enhanced alternative to the standard python interpreter
 - command completion & history, “magic” functions, etc.