Pendulum and Walker

Physics 7682 / CIS 6229

Science Goals:

- Solving Differential Equations
 - Basic ideas of ODE solvers
 - Accuracy, Stability, Fidelity
- Nonlinear Dynamics Concepts
 - Phase Plane Portraits
 - Poincare Sections
 - Period Doubling
 - Chaos
- Models of locomotion

Graphics, functions as objects, manipulating data sets
Solving Differential Equations

- “Easy task”
- Excellent off-the-shelf algorithms and functions

Basic Idea:
convert differential equation into difference equation

\[
\frac{df}{dt} = -f \quad \Rightarrow \quad \frac{f(t_{i+1}) - f(t_i)}{\delta t} \approx \frac{df}{dt}(t_i) = -f(t_i)
\]

Different algorithms use different approximations:
Pendulum exercise explores choices

“Order” of algorithm: how accuracy scales with timestep
Not all first order algorithms are created equal

(Understand by looking at phase space plots)
General Procedure

1. Convert to set of first order equations

\[
\frac{d^2 \theta}{dt^2} = -\frac{g}{L} \sin(\theta)
\]
\[
\frac{d\theta}{dt} = \omega
\]
\[
\frac{d\omega}{dt} = -\frac{g}{L} \sin(\theta)
\]

2. Choose units

\[
\frac{d\theta}{dt} = \omega
\]
\[
\frac{d\omega}{dt} = -\sin(\theta)
\]
Using Scipy's integrator

def PendulumDerivArray(vars, t):
 theta, omega = vars # unpack vars
 return numpy.array([omega, -numpy.sin(theta)])

times = numpy.arange(0, 100, 0.1)

InitialConditions = [3, 0]

trajectory = odeint(PendulumDerivArray, InitialConditions, times)

Returns an array of the form \([[[\theta_0, \omega_0],...]]\)

array([[3, 0], [2.9929382, -0.0143531], ...])

plot \(\theta\), and \(\omega\) vs time with

\[
\text{plot(times, trajectory)} \quad \text{just } \theta: \quad \text{plot(times, trajectory[:,0])}
\]

Interesting construction: pass a function to another function. Functions are objects. Functions can even return functions:

smartodeint is defined in pendulum.py is an integrator which returns functions.
Double Pendulum

• Classic example of chaotic system
 • sensitive dependance on initial conditions

• Trajectories are in 5 dimensional space
 • how to deal with all that data!

Python demo + Real Demo
Poincare Sections

- Trajectories in 5D
- Translational invariance in time: 4D phase space suffices
- Conservation of Energy: trajectories live on 3D manifold
- Poincare section: look at θ_2 and ω_2 on this manifold when $\theta_1 = 0$

$\omega_1(t = 0) = 0.1$ $\omega_1(t = 0) = 1.3$ $\omega_1(t = 0) = 1.5$
Walker

- Simplified model of bipedal motion:

Double pendulum: but pivot point switches from end of one “leg” to other whenever there is a “heelstrike”
Walker

- Remarkable: passive model -- can walk
- Nontrivial “phase diagram”
- Chaos, stable/unstable limit cycles, period doubling (limping)
- Biological significance: Evolution of geometry of legs?