1. No. On the V-t graph, $V_B > V_A$ at every second, but $\frac{V_B}{t} < \frac{V_A}{t}$ at every second.

2. No. It does mean constant speed, but the direction of the velocity could change. An example would be a circular motion with constant speed.

3. Yes. The key example in class. At the top: $V_{key} = 0, \vec{a}_{key} = -\vec{g}$

4. Both scalar.

5. No. $A_r = \frac{V^2}{R}$ when $r_1 > r_2, A_{r_1} < A_{r_2}$

6. $V = \frac{\Delta d}{\Delta t} = \frac{100}{9.8} \approx 10.2 \text{ m/s}$

 $\Delta t = \frac{\Delta d}{V} = \frac{1500}{10.2} = 147.1 \text{ s}$

7. $\Delta d = V \Delta t = \left(\frac{11.8}{60} \right) \times 175 = 344.4 \text{ km}$

8. (a) Define: origin \Rightarrow my standing point. Positive direction \Rightarrow away from me.

 (b) $x_{1,00}$

 (c) $x_{1,00}$