Superconductivity : Background

- \(R = 0 \)
- Discovered in 1911 by Kammerlingh Onnes
- Many metals superconduct at low temperatures (< 4 K)
- Manifestation of a new state of matter at low temperatures

PERFECT DIAMAGNETISM : MEISSNER EFFECT

Part 1 : Magnetization of a Type I Superconductor (Pb)

Part 2 : Magnetization of a Type II Superconductor (Pb\(_{85}\)In\(_{15}\))
The Meissner Effect in Type I SC

Type I: "All or Nothing"

Perfect Diamagnetism

Normal State

SS-10: Superconductivity

Images: Britannica Online, U. Birmingham, RIKEN
Apparatus

SS-10: Superconductivity

PUMPING MANIFOLD

INTEGRATOR

VOLTMETER

ELECTROMAGNET

LIQUID HELIUM

SC

VACUUM JACKET

LIQUID NITROGEN

ELECTROMAGNET

VACUUM JACKET
Critical Field of a Type I SC (Pb)

SS-10 : Superconductivity

Reading on Integrator (mV)

- Magnetization at 4.2 K
- Magnetization at 2.8 K

Applied Field (Gauss)

0 200 400 600 800

0 10 20 30 40

Legend:

- Red circles: Magnetization at 4.2 K
- Green squares: Magnetization at 2.8 K
Critical Field of a Type I SC (Pb)

![Graph showing the critical field of a Type I superconductor (Pb)]

- **Magnetization at 4.2 K**
- **Magnetization at 2.8 K**
- **Linear Fit**

Applied Field (Gauss)

- **2/3 Hc**

Reading on Integrator (mV)

Intermediate State
Determining T_c from H_c vs. T in Pb

From intercepts:
$T_{c,\text{est}} = 8.0 \pm 0.4 \text{ K}$
$H_{c0,\text{est}} = (890 \pm 30 \text{ G})$

Previous Results:
$T_c \text{ (Pb)} = 7.2 \text{ K}$
$H_{c0} = 803 \text{ G}$
Discussion & Conclusions

SS-10 : Superconductivity

TYPE I SC (Pb)

- Meissner state measured for Pb sample

- T_{c0} estimated to be 8.0 ± 0.4 K
 (7.19 K from literature)

- H_{c0} estimated to be $(8.9 \pm 0.3) \times 10^2$ G
 (803 G from literature)

Thanks to:
Sophie Rittner (data),
Nick Szabo