1. Consider a 1-dimensional quantum simple harmonic oscillator (QSHO) with a particle of mass \(m \) and angular frequency \(\omega \).

Write down the Hamiltonian in terms of raising and lowering operators \(\hat{a}_+ \) and \(\hat{a}_- \).

At \(t=0 \)

\[\Psi(x,0) = \sqrt{\frac{1}{3}} \psi_0(x) + \sqrt{\frac{2}{3}} \psi_2(x) \]

where \(\psi_n(x) \) are the stationary states of the QSHO.

What is \(\Psi(x,t) \)? What is the average value of energy of this state. Does it change with time?

2. Show that

\[
\int_{-\infty}^{\infty} [\hat{a}_+ \psi_n] dx = (n+1)\hbar \omega, \quad \int_{-\infty}^{\infty} [\hat{a}_- \psi_n] dx = (n)\hbar \omega.
\]

3. Calculate \(\langle x \rangle, \langle x^2 \rangle, \langle p \rangle, \langle p^2 \rangle \) for the stationary states \(\psi_0, \psi_1 \) of an QSHO.

4. Calculate kinetic energy expectation value \(\langle K \rangle \) and potential energy expectation value \(\langle V \rangle \) for the stationary states \(\psi_0, \psi_1 \) of an QSHO.

5. Find an operator \(N \) which counts the number of quanta in a given stationary state of the QSHO in terms of raising and lowering operators \(\hat{a}_+ \) and \(\hat{a}_- \).