1. Air Wedge

An air wedge is formed between two very thick glass plates separated at one edge by a very fine wire. When the wedge is illuminated from above by light with a wavelength of 600 nm, 30 dark fringes are observed. Calculate the radius of the wire. (Consider only reflections from the top and bottom surfaces of the wedge.)

Solution: Waves reflected from the bottom surface of the air wedge are phase shifted by half a wavelength, while those reflected from the top surface are not shifted. Thus a dark fringe will appear wherever the wedge thickness is a multiple of \(\frac{\lambda}{2} \), where \(\lambda \) is the wavelength of light in air. Since there are 30 fringes, these occur at thicknesses of \(0, \frac{\lambda}{2}, \frac{2\lambda}{2} \ldots 29\frac{\lambda}{2} \). Therefore the radius of the wire is roughly \(29\lambda/4 = 4.35 \mu \text{m} \).

2. Thin Oil Film

A film of oil \((n = 1.4) \) sits on a flat glass plate \((n = 1.6) \). When white light (coming from air) strikes the film vertically, the colors most enhanced in the reflected beam have \(\lambda_1 = 420 \text{ nm} \) and \(\lambda_2 = 630 \text{ nm} \). Which of the following is closest to being the minimum thickness of the film?

- (A) 150 nm
- (B) 210 nm
- (C) 225 nm
- (D) 315 nm
- (E) 450 nm
- (F) 485 nm

Solution: There is a \(\pi \) phase change for the reflection off of the top of the film but not the bottom. Therefore there will be destructive interference when \(2nt = m\lambda \), where \(t \) is the film thickness. We get destructive interference for 450 nm and 600 nm light with no missing wavelengths in between so therefore, \(m(450) = (m-1)(600) \) which means that \(m = 4 \). The thickness of the film is then \(t = m\lambda/(2n) = 4 \times (450/8) = 675 \text{ nm} \).

b) At the top the film is very thin. A band across the top of the film appears dark for all wavelengths in the visible range. What is the maximum thickness of the film in this band?

Solution: The smallest value of \(t \) for which the interference is constructive is given by \(2nt = \lambda/2 \). For smaller \(t \), we tend to have partial destructive interference, with complete destructive interference at \(t = 0 \). So for a dark band, we need \(t \ll \lambda/(4n) \) for all wavelengths in the visible range (\(\lambda \) between 400 and 700 nm). We conclude that the thickness \(t \) of the film must be much less than 75 nm at the top of the film.

3. Thin Film

A thin soap film \((n = 4/3) \) is suspended vertically in air. The film is viewed by reflected light. The light reflected from the film at a certain point is missing the wavelengths 450 nm and 600 nm, with no missing wavelengths between the two.

a) What is the thickness of the soap film at this point?

Solution: The enhanced colors have constructive interference between the reflection off the film and the reflection off the glass. For constructive interference, the phase shift

\[
\phi = \frac{2\pi}{\lambda_{oil}2t}
\]

\(\phi \) must equal 0, 2\(\pi \), 4\(\pi \), ..., where \(t \) is the plate thickness, \(\lambda_{oil} = \lambda/n_{oil} \) is the wavelength of light in oil, and \(\lambda \) is the wavelength of light in air. This gives the condition that \(t = m\lambda/(2n_{oil}) \) where \(m \) is an integer. For the two wavelengths given, we get \(t = 225 \text{ nm} \) and \(t = 150 \text{ nm} \) and we see that \(t = 450 \text{ nm} \) is the minimum thickness that satisfies both conditions. (E) is the correct answer.

b) At the top the film is very thin. A band across the top of the film appears dark for all wavelengths in the visible range. What is the maximum thickness of the film in this band?

Solution: The smallest value of \(t \) for which the interference is constructive is given by \(2nt = \lambda/2 \). For smaller \(t \), we tend to have partial destructive interference, with complete destructive interference at \(t = 0 \). So for a dark band, we need \(t \ll \lambda/(4n) \) for all wavelengths in the visible range (\(\lambda \) between 400 and 700 nm). We conclude that the thickness \(t \) of the film must be much less than 75 nm at the top of the film.

4. Double Slit Diffraction

You are given a double slit illuminated by coherent light where the slit
separation is \(d\) and the slit width is \(a\). If \(d = 7a\), how many bright fringes will appear within the central diffraction maximum? Explain your answer.

(A) 7
(B) 8
(C) 12
(D) 13
(E) 14
(F) 15

SOLUTION: Where the seventh interference fringe would be, you will get the first diffraction minimum. Therefore, you will see a total of 13 fringes in the central maximum corresponding to \(m = 0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5, \pm 6\). The correct answer is (D).

5. Single Slit Diffraction

Consider the diffraction pattern of a single slit of width \(a\), as observed on a screen a distance \(L\) from the slit. Find an approximate formula relating the peak intensity of the central maximum, \(I_{\text{max}}\), to the intensity of the light at the slit, \(I_{\text{slit}}\), the width of the slit \(a\), the wavelength \(\lambda\), and the distance \(L\) from the slit to the screen. You may assume that \(\frac{a}{L}\) is much less than 1.

SOLUTION: Let \(l\)=the length of the slit. Then if \(P_{\text{slit}}\) is the power passing through the slit, from the relation between intensity and power we have

\[P_{\text{slit}} = I_{\text{slit}}aL\]

Let \(P_{\text{screen}}\) = the power in the central diffraction peak, at the screen. Then we have (approximately)

\[P_{\text{screen}} \approx I_{\text{max}} \frac{\lambda}{a} L\]

If energy is conserved, all the power which passes through the slit ends up on the screen; let us assume that most of it falls within the central diffraction peak. Then \(P_{\text{screen}} \approx P_{\text{slit}}\), so

\[I_{\text{max}} \frac{\lambda}{a} L \approx I_{\text{slit}}aL\]

This is the required formula.

6. Sound Diffraction

A large speaker is aimed at the center of a wall 100 m away. The speaker opening is rectangular and .3 m wide by .9 m high. It emits sound with frequency 3430 Hz. How far along the wall, as measured from its center, should someone stand if she doesn’t wish to hear the sound? Assume a sound speed of 343 m/s. You may also assume that the angles in this problem are small.

(A) 16.5 m
(B) 11 m
(C) 33 m
(D) 3 m
(E) 1.6 m
(F) 300 m

SOLUTION: The diffraction minimum occurs when \(\theta \approx \lambda/d = v/(df) = .33\). Since the wall is 100 m from the speaker, she should stand 33 m from the wall’s center. (C) is the correct answer.

7. Resolution

Suppose that we have a laser with \(\lambda = 623 \text{ nm}\), emitting a beam that is 2 mm in diameter, and that is collimated to the diffraction limit. How big a spot would be produced on the surface of the moon 376 \(\times 10^3\) km away from such a device?

SOLUTION: For a laser of wavelength \(\lambda\) that is 2 mm in diameter, the angular spread of the beam due to diffraction is

\[
\sin \theta_{\text{min}} \approx 1.22 \frac{\lambda}{d} \approx \theta_{\text{min}} \approx r_{\text{moon}}/d_{\text{moon}}
\]

where \(r_{\text{moon}}\) is the radius of the spot on the moon, and \(d_{\text{moon}}\) is the distance to the moon, so we get, putting in the numbers, that \(r_{\text{moon}} \approx 143\) km.