Physics 214 Spring 99—Problem Set 12—Solutions
Handout April 29, 1999

1. Reading Assignment

Reading Assignment:
Week Beginning April 19: Serway 41.4, 41.6, 41.7, 41.8, 41.11
Week Beginning April 26: Serway 41.9, 41.10, 42.1, 42.2, 42.3, 42.4, 42.5

2. Particle in a Box and the Uncertainty Principle

A particle of mass m is confined to a region of the x-axis extending from $x = -L$ to $x = L$. The potential $V = 0$ in this region. A properly normalized solution to the time-independent Schrödinger equation for the particle has the form

$$\psi_n(x) = \sqrt{\frac{1}{L}} \cos k_n x,$$

in which $k_n = \pm \frac{(2n-1)\pi}{2L}$, and $n = 1, 2, 3, \ldots$

a) We consider the system at $t = 0$, so that we can ignore the time-dependent part of the wavefunction $e^{-i\frac{E}{\hbar}t}$. Since the wavefunctions obey the principle of superposition, any linear combination of wavefunctions is also a solution to the Schrödinger equation. Consider quantum states of very large n, for which the change in n from one state to the next is much smaller than n, so that n (and $k_n = \pm \frac{(2n-1)\pi}{2L}$) is essentially a continuous variable. Construct the superposition of all wavefunctions, with k running from $k = -\Delta k/2$ to $k = \Delta k/2$, by doing the integral:

$$\psi_{\text{total}}(x) = \frac{1}{\Delta k} \int dk \psi_n(x) = \frac{1}{\Delta k \sqrt{L}} \int \frac{dk}{\Delta k} \cos (kx)$$

b) Square the resulting wavefunction to get the probability density, and compare with the equation for the intensity in a single slit diffraction pattern,

$$I(\theta) = I_{\text{max}} \frac{\sin^2 \alpha}{\alpha^2}, \quad \alpha = \frac{\pi a}{\lambda} \sin \theta$$

What is the equivalent of α, in terms of x? You know that the first diffraction minimum occurs at $\alpha = \pi$. Find x_{min}, the value of x this corresponds to.

For the specific case of $L = 10$ nm, and $\Delta k = 8\pi / L$, plot the probability density as a function of x. What is the numerical value of x_{min} for this case?

SOLUTION:

The probability density is

$$P_{\text{total}}(x) = |\psi_{\text{total}}(x)|^2 = \frac{1}{L} \sin^2 \left(\frac{\Delta k x}{2} \right) \left(\frac{\Delta k}{2} \right)^2$$

The equivalent of α is $(\Delta k x)/2$. Setting this equal to π gives $x_{\text{min}} = \frac{2\pi}{\Delta k}$.

The probability density is plotted below:
c) From the plot in part (b), and from the similarity in the form of the equation, you can see that the probability density \(P_{total} \) has the same form as a diffraction pattern, with the first minimum at \(x_{min} \). Thus, the particle is localized to within \(\Delta x = 2x_{min} \). Show that this is consistent with the Heisenberg Uncertainty Principle.

SOLUTION:

Using the result from part (b), we have

\[
\Delta x = 2 \frac{2\pi}{\Delta k}
\]

But \(k = \frac{2\pi}{\lambda} = \frac{2\pi p}{\hbar} \), so

\[
\Delta k = \frac{2\pi \Delta p}{\hbar}
\]

Then

\[
\Delta x = 2 \frac{\hbar}{\Delta p}
\]

which is consistent with the uncertainty relation

\[\Delta x \Delta p \geq \hbar.\]
b) For the first excited state, of energy E_2, where is it most probable to find the electron?

SOLUTION: It is most probable to find the electron at $x = \pm L/2$.

c) How will the energy of the lowest energy state change if the width of the box is reduced by a factor of 2?

SOLUTION: The energy varies like $1/L^2$, so it will increase a factor of 4.

d) What is the probability that you will find the electron between $-L/2$ and $+L/2$ when the electron is in energy state E_n and n is even?

SOLUTION: An integral number of half-wavelengths must fit in the box in order to satisfy the boundary conditions. Thus $n\lambda_n/2 = 2L$, so $\lambda_n = 4L/n$ and $k_n = 2\pi/\lambda_n = n\pi/(2L)$. In addition, the wavefunction must go to zero at $x = \pm L$. The solutions are then $\psi_n(x) = B\cos\left(\frac{n\pi x}{2L}\right)$ for n odd, and $\psi_n(x) = A\sin\left(\frac{n\pi x}{2L}\right)$ for n even. We are concerned in this section with the solutions for n even. What is A? It comes from the normalization condition:

$$\int_{-\infty}^{\infty} |\psi_n(x)|^2 dx = 1,$$

so

$$\int_{-L}^{L} |\psi_n(x)|^2 dx = A^2\int_{-L}^{L} \sin^2\left(\frac{n\pi x}{2L}\right) dx = A^2L = 1,$$

so $A = 1/\sqrt{L}$. The probability of finding the particle between $-L/2$ and $L/2$ is the integral of the probability density over that range:

$$\int_{-L/2}^{L/2} |\psi_n(x)|^2 dx = A^2\int_{-L/2}^{L/2} \sin^2\left(\frac{n\pi x}{2L}\right) dx$$

$$= \frac{1}{L} \left[\frac{L}{2} - \frac{L}{n\pi} \sin\left(\frac{n\pi}{2}\right) \right] = \frac{1}{2}$$

for n even.

e) If the electron is in its ground state, (with energy E_1), what is the probability that it will be found in the interval between $x = 0$ and $x = \Delta x$, where $\Delta x << L$?

SOLUTION: The form of the wavefunction for $n=1$ is $\psi_1(x) = B\cos\left(\frac{\pi x}{2L}\right)$, where B is given from the normalization condition as

$$\int_{-L}^{L} |\psi_1(x)|^2 dx = B^2\int_{-L}^{L} \cos^2\left(\frac{\pi x}{2L}\right) dx = B^2L = 1,$$

so $B = 1/\sqrt{L}$. The probability that the electron will be found in the interval between $x = 0$ and $x = \Delta x$, is

$$\int_{0}^{\Delta x} |\psi_1(x)|^2 dx = \frac{1}{L} \int_{0}^{\Delta x} \cos^2\left(\frac{\pi x}{2L}\right) dx \approx \frac{\Delta x}{L}$$

for $\Delta x << L$.

4. Serway, Chapter 41, pg 1247, Problem 28
SOLUTION: The wave function is given by

\[\psi = \sqrt{\frac{2}{L}} \sin \left(\frac{\pi x}{L} \right) \]

(a) The probability is determined from the integral

\[
P(0 \leq x \leq \frac{L}{3}) = \int_{0}^{\frac{L}{3}} dx \mid \psi \mid^2 = \frac{2}{L} \int_{0}^{\frac{L}{3}} dx \sin^2 \left(\frac{\pi x}{L} \right)
\]

\[
= \frac{2}{L} \int_{0}^{\frac{L}{3}} dx \left(\frac{1}{2} - \frac{1}{2} \cos \left(\frac{2\pi x}{L} \right) \right)
\]

\[
= \frac{1}{L} \left[\frac{x}{2} - \frac{1}{2\pi} \sin \left(\frac{2\pi x}{L} \right) \right]_0^{\frac{L}{3}}
\]

\[
= \frac{1}{3} - \frac{1}{2\pi} \sin \left(\frac{2\pi}{3} \right)
\]

\[
= \frac{1}{3} - \frac{\sqrt{3}}{4\pi} = 0.196
\]

(b) Note \(\mid \psi(x) \mid^2 \) is symmetric about \(x = \frac{L}{2} \) and by definition \(P(0 \leq x \leq L) = 1 \). Hence

\[
P(0 \leq x \leq \frac{L}{3}) = P(\frac{2L}{3} \leq x \leq L)
\]

and therefore

\[
P(\frac{L}{3} \leq x \leq \frac{2L}{3}) = 1 - 2 \times 0.196 = 0.608
\]

5. Infinite Well with rounded edges

A particle of mass \(m \) moves in a potential well of width \(2L \) (from \(x = -L \) to \(x = L \)), and in this well the potential is given by

\[U(x) = \begin{cases}
\infty & x < -L \\
\frac{h^2}{mL^2} \left(\frac{x^2}{L^2} - x^2 \right) & -L \leq x \leq L \\
\infty & x > L
\end{cases} \]

In addition, the particle is in a stationary state described by the wave function

\[
\psi(x) = \begin{cases}
0 & x \leq -L \\
A \left(1 - \frac{x^2}{L^2}\right) & -L < x < L \\
0 & x \geq L
\end{cases}
\]

(a) Determine the energy of the particle in terms of \(h \) and \(m \).

SOLUTION: The Time-independent Schrödinger equation is given by

\[
\frac{d^2\psi}{dx^2} = -\frac{2m}{h^2} (E - U) \psi
\]

Hence for the given \(\psi(x) \) we have

\[
\frac{d^2\psi}{dx^2} = -\frac{2m}{h^2} (E - U) \psi
\]

\[
-2 \frac{A}{L^2} = -\frac{2m}{h^2} \left(E + \frac{h^2}{mL^2} \left(\frac{x^2}{L^2} \right) \right) A \left(1 - \frac{x^2}{L^2}\right)
\]

\[
-2 \frac{A}{L^2} = \frac{2m}{h^2} \left(E + \frac{h^2}{mL^2} \left(\frac{x^2}{L^2} \right) \right) A \left(1 - \frac{x^2}{L^2}\right)
\]

Solving for \(E \) yields \(E = \frac{h^2}{mL^2} \)

(b) Determine the numerical value of \(A \).

SOLUTION: The normalization condition is given by

\[
\int_{-\infty}^{\infty} \mid \psi(x) \mid^2 dx = 1
\]

Hence

\[
1 = A^2 \int_{-\infty}^{\infty} (1 - \frac{x^2}{L^2})^2 dx = 2A^2 \int_{0}^{L} (1 - \frac{x^2}{L^2} + \frac{x^4}{L^4}) dx
\]

\[
= 2A^2 \left[x - \frac{x^3}{3L^2} + \frac{x^5}{5L^4} \right]_0^L
\]

\[
= 2A^2 \left(L - \frac{2L^3}{3L^2} + \frac{L^5}{5L^4} \right)
\]

\[
= \frac{168}{15} A^2 L
\]
Thus \[A = \sqrt{\frac{15}{16L}}. \]

c) Determine the most probable location(s) of the particle.

SOLUTION: The probability density \(P(x) = |\psi(x)|^2 = A^2(1 - \frac{x^2}{L^2})^2. \)
Maxima and minima occur when
\[
\frac{dP(x)}{dx} = -4x \left(1 - \frac{x^2}{L^2} \right) = 0
\]
This happens at \(x = \pm L \) and \(x = 0 \). But \(P(\pm L) = 0 \), so the most probable location for the particle is \(x = 0 \).

6. Time-dependent Schrödinger Equation

a) By substitution, show that, for any non-zero values of \(\omega, k, \) and \(A \), the wave function \(\Psi(x, t) = A\sin(kx - \omega t) \) does not satisfy the time-dependent Schrödinger equation, with \(V(x, t) = 0 \).

SOLUTION:

The time-dependent Schrödinger equation, with \(V(x, t) = 0 \), is
\[
-\frac{\hbar^2}{2m} \frac{\partial^2 \Psi(x, t)}{\partial x^2} = i\hbar \frac{\partial \Psi(x, t)}{\partial t}
\]
The space derivative is
\[
\frac{\partial^2 \Psi(x, t)}{\partial x^2} = -k^2 A\sin(kx - \omega t)
\]
The time derivative is
\[
\frac{\partial \Psi(x, t)}{\partial t} = \omega A\cos(kx - \omega t)
\]
Substituting, we have
\[
k^2 \frac{\hbar^2}{2m} A\sin(kx - \omega t) \neq i\hbar \omega A\cos(kx - \omega t)
\]
Since sines and cosines are linearly independent functions, and since purely real numbers cannot equal purely imaginary numbers, the Schrödinger equation is not satisfied, for arbitrary \(x \) and \(t \).

b) The wave function \(\Psi(x, t) = Ae^{i(kx-\omega t)} \) satisfies the time-dependent Schrödinger equation. Explain why it does not describe a particle in a bound (standing wave) state of an infinite potential well. What wave function must be added to the above to obtain a superposition which does describe a bound state?

SOLUTION:

The wave function \(Ae^{i(kx-\omega t)} \) corresponds to a traveling wave, moving in the \(+x\) direction. This is not a standing wave solution. To obtain a standing wave, we must add a traveling wave moving in the \(-x\) direction, that is, \(Ae^{i(-kx-\omega t)} \). The resulting superposition
\[
\Psi_{\text{total}}(x, t) = Ae^{i(kx-\omega t)} + Ae^{i(-kx-\omega t)} = 2A \cos kxe^{-\omega t}
\]
is a standing wave and describes a bound state.

7. The Wavefunction of an Electron

A sinusoidal one-dimensional traveling wavefunction for an electron is given by
\[
\Psi(x, t) = Ae^{i(1.5 \times 10^{16} \text{ m}^{-1}x - 3 \times 10^{16} \text{ s}^{-1}t)}.
\]
a) What is the momentum of the electron?

SOLUTION: We know that the general form of a sinusoidal one-dimensional traveling wavefunction is
\[
\Psi(x, t) = Ae^{ipx-\beta t}.
\]
So, by comparison with the above relation, we have
\[
P = \frac{p}{\hbar} = 1.5 \times 10^{10} \text{ kg m/s}
\]
which gives \(p = 1.58 \times 10^{-24} \text{ kg m/s} \).

b) What is the total energy of the electron (in eV)?

SOLUTION:

Again, by comparison with the relation in part (a), we have

\[\frac{E}{\hbar} = 3 \times 10^{16} \text{ s}^{-1} \]

which gives \(E = 3.16 \times 10^{-18} \text{ J} = 19.8 \text{ eV} \).

c) What is the potential energy of the electron (in eV)?

SOLUTION:

From part (a), we know the momentum. The kinetic energy is given by

\[K = \frac{p^2}{2m} = 1.37 \times 10^{-18} \text{ J} = 8.6 \text{ eV} \]

using \(m = 9.11 \times 10^{-31} \text{ kg} \). Using \(E \) from part (b), we have \(V = E - K = 11.2 \text{ eV} \).