Due before 9:00 am, November 18, 1999

1. Writing:

(a) Draw an energy level diagram for the diatomic molecule of mass m and spin I in a one-dimensional box of length L. Consider the noninteracting states of mass m and spin I in one-dimensional box. Let V be a potential well of depth V. The probability of reflection is given by

\[P = \frac{\tanh(\beta V)}{\cosh(\beta V)} \]

where \(\beta = \frac{1}{kT} \) is the Boltzmann constant, \(k \) is the Boltzmann constant, \(T \) is the temperature, \(V \) is the potential energy, and \(L \) is the length of the box.

(b) Suppose that the potential well is a harmonic oscillator of frequency \(\omega \). The probability of reflection is given by

\[P = \frac{1}{2} - \frac{1}{2} \cosh(\beta \hbar \omega) \]

2. Problem:

(a) Consider the noninteracting states of spinless fermions of mass \(m \) in a one-dimensional box. Consider the noninteracting states of spinless fermions of mass \(m \) in a one-dimensional box.

(b) Young and Freeman, Problem 4-20, p. 1311

3. Young and Freeman, Problem 4-20, p. 1311

This phenomenon in everyday life...
The following sections from the lab manual for lecture needs to be done:

1. Schrödinger

6 points

\[
\begin{align*}
\text{(f)} \\
\text{(d)} \\
\text{(c)} \\
\text{(b)} \\
\text{(a)}
\end{align*}
\]

Consider the formula of the ground state of this system in one-dimensional box of length \(L \) with infinite high walls. The total energy of the non-interacting fermions of mass \(m \) and spin \(\frac{1}{2} \) are confined in a box of length \(L \). What is the ground state and first excited state energy in terms of the parameters \(m, L, \) and \(\hbar \)?

6. Fermions – Spin \(\frac{1}{2} \)

Before starting please read the introduction and introduction to the section S5: The hydrogen atom

Section S2: Square Well

Section S3: Square Shield

In terms of the parameters \(m, L, \) and \(\hbar \),

- What is the ground state and first excited state energy in terms of the parameters \(m, L, \) and \(\hbar \)?
 - First excited state energy
 - Ground state energy