Quiz #8: Interference and Antenna Arrays

Jim Sethna

1. **Array of Antennas.** 16 antennas are arranged in an East-West row, in a straight line between Elmira (West) and Binghamton (East).

 The radio station transmits at \(f = 100 \text{ kHz} \). The antennas are spaced 0.75 km apart. Each antenna transmits a phase \(\phi_0 \) of the antenna to its immediate West: that is, if the one closest to Elmira is transmitting \(\cos(2\pi ft) \), the next one is transmitting \(\cos(2\pi ft + \phi_0) \), and so on.

 (A) What phase difference \(\phi_0 \) should the station use if they want to focus their transmission toward Elmira?

 Let Elmira be a distance \(x \) from the nearest antenna.

 \[
 \phi_0 = \frac{\pi}{2}
 \]

 The wave from the nearest antenna as it hits Elmira is the same phase as the wave from that antenna at time \(t - \frac{x}{c} \): \(\cos(2\pi f (t - \frac{x}{c})) \).

 The wave from, e.g., the next antenna is likewise \(\cos(2\pi f (t - \frac{x+750}{c}) + \phi_0) \).

 For constructive interference,

 \[
 2\pi f (t - \frac{x}{c}) = 2\pi f (t - \frac{x+750}{c}) + \phi_0
 \]

 \[
 \phi_0 = 2\pi f \left(\frac{750}{c} \right) = 2\pi \left(\frac{10^5}{3 \times 10^8} \right) \left(\frac{750}{c} \right)
 \]

 \[
 = \frac{\pi}{2}
 \]
(B) How big an angle will the main transmission beam subtend? (That is, what is twice the angle α_{min} to the first minimum in the intensity pattern?)

\[750\cos(\alpha_{\text{min}}) \]

[Note: α_{min} is not measured from perpendicular, \(\cos, \text{not} \sin \)]

At a distance x from the nearest antenna, the rest antenna gives $2\pi f (t - \frac{x}{c})$ and the next gives $2\pi f \left(\frac{t - x}{c} - \frac{750\cos x}{c} \right) + \phi_0$.

The phase difference is

\[-\frac{\pi}{2} \cos \alpha_{\text{min}} + \phi_0 \]

\[= -\frac{\pi}{2} \cos \alpha_{\text{min}} + \frac{\pi}{2} \]

\[2\alpha_{\text{min}} = 82.8^\circ \]

\[-\frac{\pi}{2} \cos \alpha_{\text{min}} + \frac{\pi}{2} = \frac{2\pi}{16} \]

\[\cos \alpha_{\text{min}} = 1 + \left(\frac{2\pi}{16} \right) \left(\frac{2}{\pi} \right) = 1 + \frac{1}{4} = \frac{5}{4} \left(\text{not possible} \right) \]

\[\alpha_{\text{min}} = \arccos \left(\frac{3}{4} \right) = 0.72 \text{ radians} = 41.4^\circ \]

For destructive interference, this should equal $2\pi/16$ (for 16 antennas). $\alpha_{\text{min}} = \frac{3\pi}{4}$.

\[\text{For destructive interference, this should equal} \]

\[2\pi/16 \text{ (for 16 antennas)} \]

\[\text{This should equal} \]

\[\alpha_{\text{min}} = \arccos \left(\frac{3}{4} \right) = 0.72 \text{ radians} = 41.4^\circ \]