Flocking / Nonlinear Hydrodynamics

Flocking: The collective, coherent motion of a large number of organisms

\[\rightarrow \text{Universal Property: seen in length scales from } \mu\text{m (Dictostelium discoideum) to m (birds) to km (wildebeasts)} \]

\[\rightarrow \text{Show Starling Movie (if rods are available)} \]

Two Types of Flocking:
1) Symmetry Broken by external field (compass)
2) Symmetry Broken by interactions w/ neighbors

We are more interested in case #2 (Mean-Field)

Big Question: Given no external field exists, how does symmetry breaking occur?

\[\rightarrow \text{will use RG on a continuum theory of motion} \]

We can think of flocking analogously to a ferromagnet

\[
\begin{align*}
\text{Magnet:} & \quad \text{Flock:} \\
\text{spin:} & \quad \text{velocity:} \\
M & \quad \langle \mathbf{v} \rangle \\
\text{external field:} & \quad \text{misalignment error} \\
T & \quad \text{will flip here} \\
\text{Both have only short-range interactions} &
\end{align*}
\]
Problem: How can we get symmetry-breaking in a system with rotational invariance, only short-range interactions, and finite T? (M-W says that it's impossible)

→ We'll see

Microscopic Model (Vicsek et al., 1995)

1) N "boids" in volume L^d (ρ = N/L^d) w/ periodic B.C.

2) All boids move w/ constant speed V_0 & interact only with other boids within a radius R_0.

3) Heading = θ_i & θ_i^{t+1} = <θ_j^{t,neighbors} + η_i^t

4) <η_i(t)η_j(t')> = Δδ_{ij}δ(t-t') (Δ ↔ T)

Note: XY model if V_0=0, Mean Field Theory if V_0→∞

→ Show Microscopic Movies

for d=2:

\[|\vec{v}| \sim (\Delta - \Delta_c)^{0.45} \]

\[|\vec{v}| \sim (\rho - \rho_c)^{0.35} \]

Long-range order in 2D!

We'll analyze by going to a continuum theory
Hydrodynamic Model

Basic Idea: Write down a PDE which contains all relevant terms allowed by the system's physics

→ Too complicated to proceed by decimating the microscopic model (a la 1-D Ising)

Specifically:
1) Write down all relevant terms
2) Eliminate terms disallowed by symmetries/conservation laws

Example: Navier-Stokes Equations

\[10^{23} \text{ molecules} \rightarrow \vec{u}, \rho, T, D \]

Conservation laws
- Mass
- Momentum (second)
- Energy

Symmetries
- Translation
- Rotation
- Galilean (first)

\[
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{v}) = 0 \rightarrow \text{Typical continuity equation}
\]

\[
\frac{\partial \vec{v}}{\partial t} + \nabla \cdot (\vec{v} \otimes \vec{v}) = \frac{1}{\rho} \left(-\nabla \mathcal{P} + \frac{\mu}{\rho} \nabla^{2} \vec{v} + \frac{\tau}{\rho} \right)
\]

\[
\mathcal{P}(\rho) = \sum_{n=1}^{\infty} (\rho - \rho_0)^n \quad < f_n(\vec{r} \pm t) f_j(\vec{r} \pm t') > = \Delta s(t) \delta(\vec{r} - \vec{r}') \delta(t - t')
\]
So what does this tell us? (Eqs are hard)

When do we have an ordered state?

→ Steady-state & Uniform Flow case \((\frac{\partial \vec{v}}{\partial t} = 0, \frac{\partial \vec{v}}{\partial \vec{x}} = 0)\)

\[0 = \alpha \vec{v} - \beta |\vec{v}|^2 \vec{v} \]

\[|\vec{v}| = \sqrt{\frac{\alpha}{\beta}} \equiv V_0 \]

→ Ordered flow exists only when \(\alpha, \beta\) have the same sign (but is it stable?)

Previous week → All long range order gets quenched by fluctuations

Quasi-Linear Theory

We need to make some simplifications to make eqns tractable

\(\hat{\vec{v}} = V_0 \hat{\vec{x}} \parallel + \hat{\vec{v}} = (V_0 + \delta V_\parallel) \hat{\vec{x}} \parallel + \hat{\vec{v}}\)

→ Assume fluctuations in \(\delta V_\parallel\) are linear, then plug back into full eqns to see what happens with \(\vec{v}\)

\[\frac{\partial \hat{\vec{v}}}{\partial t} + \chi_1(\) + \chi_2(\) = - \hat{\vec{v}} \hat{\vec{P}} + \hat{\vec{D}}(\) + \hat{\vec{D}}(\) + \hat{\vec{D}}(\) + \hat{\vec{D}}(\) \]

\[\text{nonlinear terms!} \]

(Similar Mass Conservation
(Assumes \(\rho = \rho_0 + \delta \rho\))
First Step: Linearize in \vec{v} & look at $\langle \vec{v}(\vec{r},t) \rangle^2$

If this diverges, fluctuations dominate

$$<\vec{v}(\vec{r},t)^2> = \int \frac{d^d q}{(2\pi)^d} C_{ii} \sim \int \frac{d^d q}{q^2} \sim \int \frac{d^d q}{q^2}$$

\Rightarrow Diverges in the UV $d > 2$ ($q \to \infty$)
\Rightarrow Infared $d \leq 2$ ($q \to 0$)

Note: UV divergence is troublesome, since we don't expect the theory to hold at small wavelengths
2) Infared divergence \Rightarrow Fluctuations win on long wavelengths

\Rightarrow No flocking in 2D! (MW strikes again)

\therefore Flocking must be a non-linear effect.

Scaling Analysis:

$X_{\perp} = b X_{\perp}$
$X_{\parallel} = b^z X_{\parallel}$ \rightarrow Anisotropy exponent
$t' = b^z t$ \rightarrow Time exponent
$\vec{V}_1 = b^z \vec{V}_1$ \rightarrow Roughness exponent (determines if fluctuations take over)

\Rightarrow In linear theory, only diffusion constants ξ noise are important
\Rightarrow Keep them constant under rescaling (ξ-expansion)

$D_{\perp} = b^{2-z} D_{\perp} \Rightarrow z = 2$
$D_{\parallel} = b^{z-2\xi} D_{\parallel} \Rightarrow \xi = 1$
Scaling (cont.)

To keep the form of the f-f correlations
\[f' = b^{-1 - d/2} f \]
Wait noise to remain constant w.r.t. linear terms:
\[\frac{\partial^2 \psi}{\partial z^2} = b^{-2} \frac{\partial \psi}{\partial t} \Rightarrow \chi - z = -1 - d/2 \]
\[\Rightarrow \chi = 1 - \frac{d}{2} \]
Again, no flocking in d = Z since Z fluctuations don’t die

Nonlinear Terms:
\[\lambda_1, \lambda_2 \rightarrow b^{Z - d/2} \Rightarrow \lambda \]
\[\sigma \rightarrow b^{n + (1-n)d/2} \]
(4 is the upper critical dimension)

But still, what happens for 2d < 4? Should have flocking in d = 2

\[\Rightarrow \text{Dynamic RG on quasi-linear equations (allow all parameters to flow)} \]

\[\text{Messy calculation, will outline} \]

1) Transform Q-L eqns into factor (squared)

2) LH the E.O.M. for the inner cylinder (hard!!) & apply them on the outer shell

3) rescale, keeping constant

\[\Rightarrow \delta t, \delta, \xi \text{ s.t. the nonlinear terms } (\lambda_1, \lambda_2, \sigma, ...) \]
are fixed

\[\Rightarrow \text{This is an expansion about the nonlinear fixed pt.} \]

\[\Rightarrow \frac{d\epsilon}{d\xi}, \frac{d\sigma}{d\xi}, \ldots \]
1) Nonlinear terms scale identically to the "harmonic" analysis.

2) Due to calculational difficulties, only bounds can be put on exponents for $2 < d < 4$ (x_2 causes problems):

\[\frac{6}{5} < z < 2, \quad \frac{3}{5} < \xi < 1, \quad \chi < \min\left(\frac{1}{3}, 1 - \frac{d}{2}\right) \]

3) Since $x_2 = 0$ for $d = 2$, exponents are known:

\[z = \frac{6}{5}, \quad \xi = \frac{3}{5}, \quad \chi = -\frac{1}{5} \]

\[\Rightarrow \text{For } 2 < d < 4, \quad \vec{V}_t' \sim b^\xi \vec{V}_t \]

since $\chi < 0 \Rightarrow$ Fluctuations die

\[\Rightarrow \text{Long-Range Order} \]