\[Z = \text{Tr} \ e^{\beta J \sum S_i S_j} \]
\[= \text{Tr} \ \prod e^{\beta J S_i S_j} \]
\[= \text{Tr} \ \prod \left[\sum_{n\text{ even}} \frac{1}{n!} \left(\beta J S_i S_j \right)^n + \sum_{n\text{ odd}} \frac{1}{n!} \left(\beta J \right)^n S_i S_j \right] \]
\[= \text{Tr} \ \prod \left[\cosh \beta J + (\sinh \beta J) S_i S_j \right] \]
\[\propto \text{Tr} \ \prod \left[I + (\tanh \beta J) S_i S_j \right] \]

This has terms of the form

\((\tanh \beta J)^n S_i S_j \ldots S_{i_n} S_{j_n}\)

Since \(\text{Tr} \ S_i^n = 0\) if \(n\) is odd, only sets of \(S_i\)'s that form connected, closed paths survive. Hence some number of

\[Z = \prod \left(\tanh \beta J \right) \text{length of paths} \]
To find a correlation function, we insert

\(\langle s_a s_b \rangle = \text{Tr} s_a s_b e^{\beta J_E s_a s_b} \)

Now the set of curves that survives the sum includes an open curve connecting \(s_a \) to \(s_b \).

This is like a domain wall on the dual lattice.

SLE is a method for describing such a domain wall.

What we need is a probability measure on curves in 2d that connect one point on the boundary of a set to another.

Physicists like the path integral measure. Mathematicians like Brownian motion. How can we relate these curves to Brownian motion?

Enter Karl Löwner.
Lowner invented a method for describing the growth of a \(2d\) curve from the boundary of the upper half plane. The idea was to find a conformal map of the form

\[
\begin{align*}
 b &\rightarrow b_+ \\
 a &\rightarrow a_+
\end{align*}
\]

This is easy for a straight line:

\[
\begin{align*}
 a &\rightarrow a + 2.1 \\
 a &\rightarrow a
\end{align*}
\]

Now imagine a growing curve with time \(t\) and a map \(g_t\) that maps it out.

\[
\begin{align*}
 g_t = a + \left(\frac{(2-a_2)^2 + 4t}{2}\right)^{1/2}
\end{align*}
\]

Now, we want to find a measure on \(2d\) Brownian curves. What properties should the measure have?

This measure is mathematically undefined and rigorous.
The map \(g dt \) that maps out the extra bit should be the straight line map:

\[
g_{++dt} = a_t + \sqrt{(g_t - a_t)^2 + 4ldt)}^{1/2}
\]

\[
\frac{d}{dt} g_t = \frac{2}{g_t - a_t}
\]

Now we have a conformal map that associates a 1D function \(a_t \) to a growing 2D curve. What if we want a random curve?

Now our measure on 2D curves will be a measure on 1D functions \(a_t \). What properties should this measure have?

1. Markov property:
 \[
 \mu(\gamma_2 | \gamma_1 , D) = \mu(\gamma_2 , D | \gamma_1)
 \]

2. Conformally invariant (critical curves)

3. Reflection invariance

A measure with these properties is the measure on 1D Brownian curves, \(B_t \). This measure is mathematically well defined and rigorous.
SDE

\[\hat{g}_t = g_t - \alpha_t \]
\[d\hat{g}_t = \frac{2d\hat{g}_t}{\hat{g}_t} - d\alpha_t \]
\[= \frac{2d\hat{g}_t}{\hat{g}_t} = \sqrt{\kappa} \, dB_t \]

What is the significance of \(\kappa \)?

Aside on SDE:

\[dx_t = ud\bar{t} + \nu dB_t \]
\[\frac{dx}{dt} = u + \eta \], with \[\langle \eta(t)\eta(t') \rangle = \nu^2 \delta(t-t') \]
\[\langle dB_t \rangle = 0 \], \[\langle dB_t^2 \rangle = dt \]

\[dx_t = \frac{2dt}{x_t} + \sqrt{\kappa} \, dB_t \]

Say \(\kappa \) is small:

\[x_t \, dx_t = 2dt \Rightarrow x_t^2 \sim 4t \]

Say \(\kappa \) is large:

\[dx_t = \sqrt{\kappa} \, dB_t \Rightarrow x_t^2 \sim \kappa t \]
So for $K < 4$, the SLE curve is driven away from the origin, meaning that it does not intersect itself.

For $K > 4$, noise dominates and the trace will intersect itself (the real line) an infinite number of times. When this happens, the enclosed region is "swallowed" and mapped to a single point.

There is a duality between these two phases:

\[
\begin{align*}
\mathcal{L} & \quad \rightarrow \quad \mathcal{L} \\
\end{align*}
\]

Relating $K \leftrightarrow \frac{16}{K}$

As we will see, K and $\frac{16}{K}$ correspond to the same CFT.
What can we calculate with SLE?

Geometrical events - e.g. probability of SLE hitting some set.

Examples:
- Left passage
- Fractal dimension
- Crossing probability

Associating SLE with physics models.

Restriction, locality

What does SLE do?

Outline - questions

Blackboard

[Diagram of a sketch with labeled points A, B, C, D, and the phrase 'Crossing probability']
What does the SLE do?

- Defines a measure on various classes of random curves in 2D (the measure on \mathbb{R}^2).

- Describes growth of curves in terms of an SDE that can be solved using rigorous methods.

- Exploits the conformal invariance and Markov properties of the measure to express the probabilities of various events as SDE's which can then be turned into PDE's that can be solved.