LANDAU THEORY

Free Energy, Superfluids, Superconductors, Magnets, Martensites, Liquid Crystals, Dynamics, Surface Growth (HPZ), Crack Growth (Hodgeon, Eastgate), etc.

1. Pick an order parameter field.
 - Diffusion: scalar \(p \).
 - Waves on a string: height \(y \); Dynamics.
 - Magnets: vector \(M \).
 - Superfluid: complex number \(\Psi = \Phi e^{i\xi} \).

 • Allow change of magnitude as well as direction: Landau order parameter.
 • Good near phase transitions.
 • Useful for studying internal structure of defects (uncontrolled usually).

2. Write the most general possible free energy \(F(\Psi, \dot{\Psi}, M, \dot{M}, \frac{\partial M}{\partial x}, \frac{\partial M}{\partial t}, \frac{\partial \Psi}{\partial x}, \frac{\partial \Psi}{\partial t}, \frac{\partial^2 \Psi}{\partial x^2}, \frac{\partial^2 \Psi}{\partial t^2}, \frac{\partial^2 \Psi}{\partial x \partial t}, \ldots) \) or equation of motion

 \[F(\Psi, \dot{\Psi}, M, \dot{M}, \frac{\partial M}{\partial x}, \frac{\partial M}{\partial t}, \frac{\partial \Psi}{\partial x}, \frac{\partial \Psi}{\partial t}, \frac{\partial^2 \Psi}{\partial x^2}, \frac{\partial^2 \Psi}{\partial t^2}, \frac{\partial^2 \Psi}{\partial x \partial t}, \ldots) = 0 \]

 • Arbitrary, nonlinear function
 • Assumed local: long-range forces should have their fields as part of the order parameter.
3. Specialize to long length & time scales

\[\frac{\partial W}{\partial x^N} \sim \frac{1}{D^N} \quad \text{as } D \to \infty \]

- Throw out high derivatives,

4. Impose the symmetries and conservation laws

Magnet: free energy

\[\mathcal{F}(\vec{M}, \vec{x}, \frac{\partial M}{\partial x}, \frac{\partial^2 M}{\partial x^2}, \frac{\partial M}{\partial y}, \frac{\partial M}{\partial z}, \ldots) \]

- Translational symmetry: \(\vec{x} \to \vec{x} + \vec{\Delta} \) unchanged

- Rotational symmetry: Scalars from \(\vec{\nabla} \vec{M} \)

\[\nabla \cdot \vec{M} \quad \left(\partial_x M_y \right) \left(\partial_x M_y \right) \quad \vec{M}^2, \quad \vec{M}^4 \]

\[\mathcal{F}[\vec{M}] = A + B \vec{M}^2 + C \vec{M}^4 + D \nabla \cdot \vec{M} + E \partial_x M_y \partial_x M_y \]

\[+ F \left(\partial_x M_y \partial_y M_y \right) + G \left(\partial_x M_y \partial_y M_y \right) + M \partial_x \partial_y M_y \]

- Total Divergences

\[\int \mathcal{F}[\vec{M}] \, d^3x = \ldots + \int \text{Divergence} \]

Integrate by Parts

\[\int \partial_x M_y \partial_x M_y \, dx = \int M \partial_x \partial_y M_y \, dx \]

\[= \left[\text{Boundary terms} \right] + \int \partial_x M_y \partial_y M_y \, dx \]

\[\mathcal{F}[\vec{M}] = A + B \vec{M}^2 + C \vec{M}^4 + E \partial_x M_y \partial_x M_y + F \left(\partial_x M_y \right)^2 \]
Wave Equation - Stretched String

Most general equation of motion, $y(x,t)$, up to second derivatives:

$$F(y, x, t; \frac{\partial y}{\partial x}, \frac{\partial y}{\partial t}, \frac{\partial^2 y}{\partial x^2}, \frac{\partial^2 y}{\partial t^2}, \frac{\partial^2 y}{\partial x \partial t}) = 0$$

Translation Invariance $\rightarrow \times$

Time independence \rightarrow not t

Shift string upward \rightarrow no y

Small displacements \rightarrow linear in y

$$A \frac{\partial y}{\partial x} + B \frac{\partial y}{\partial t} + C \frac{\partial^2 y}{\partial x^2} + D \frac{\partial^2 y}{\partial t^2} + E \frac{\partial^2 y}{\partial x \partial t} = 0$$

Spatial inversion $\rightarrow A = E = 0$

Time reversal invariance (no friction) $\Rightarrow B = 0$

$$C \frac{\partial^2 y}{\partial x^2} + D \frac{\partial^2 y}{\partial t^2} = 0$$

$$\frac{\partial^2 y}{\partial t^2} = \frac{C}{D} \frac{\partial^2 y}{\partial x^2} \quad \text{Wave equation} \quad v = \sqrt{\frac{C}{D}}$$
Diffusion Equation

- \(\rho \) is conserved.

\[
\frac{\partial \rho}{\partial t} = - \nabla \cdot \mathbf{J}
\]

- Most general:
 - Long Length & Time
 - High Gradients
 - Space & Time Translations

\[
\mathbf{J}(\rho, \mathbf{x}, t, \nabla \rho, \partial \rho / \partial t, \ldots)
\]

\[
= -D(\rho) \nabla \rho \quad \text{(Must have one gradient)}
\]

\[
\frac{\partial \rho}{\partial t} = - \nabla \cdot (D(\rho) \nabla \rho)
\]

\[
= D \nabla^2 \rho \quad \text{if } \rho \approx \text{constant}
\]
1. **Why are power series special?**

 Why not $A \sqrt{m^2} + B \Theta(|m^1 - 6|) + \ldots$?

 - Local coarse-grained free energies always analytic

 $Z = \text{Tr}(e^{-\beta H}) = \sum e^{-\beta H}$

 Eigenvalues

 Small region \Rightarrow discrete eigenvalues

 Each term analytic

 \Rightarrow Any finite-size system has analytic free energy

 Usually same for

 $e^{-\beta F[M]} = \text{Tr} e^{-\beta H}$

 $\{ \text{states with } M(x) \}$

 Local

 - Not always true for equations of motion!

 Non-equilibrium

 Plasticity? (Our current research).
- Noise, Dirt

Statistical Mechanics. Fluctuations often are crucial to the behavior, must be included in the free energy &/or laws of motion.

→ Second Order Phase Transitions
 Thermal Fluctuations Change the Behavior

 Critical Phenomena, Renormalization Group (still starts with Landau theory).

→ Fluctuation-dominated Phases
 Spin glasses: dirt important for all $T < T_c$
 KPZ: fluctuations cause roughness on all scales.