Markov Chains

Algorithms for Using Model Equilibration:

\[2^N \text{ States } \{ S_i \} \]

Transition Rules:

\[P_{S_i \rightarrow S_j} = \text{Probability } S_j \text{ at } t+1 \]

given \(\{ S_i \} \) at time \(t \).

Will it reach thermal equilibrium?

Red & Green Bacteria (HW 3.1)

1001 states \# red = 0, \ldots, 1000 = \alpha

Transition rates \(P_{\alpha+1 \rightarrow \alpha}, P_{\alpha-1 \rightarrow \alpha}, P_{\alpha \rightarrow \alpha} \)

What is the long-time limit?
Generalize to Markov Chain.

- Finite set of states \(\mathcal{X} \times \mathcal{Y} \)
- Markovian Assumption: Future evolution depends only on current state, no memory
- Transition probabilities for next time step \(P_{x \rightarrow y} \): \(\bar{P}_{n+1} = P \cdot \bar{P}_n \)

\(0 \leq P_{x \rightarrow y} \leq 1 \) (No negative rates)

- \(\sum_{x} P_{x \rightarrow y} = 1 \) (Probability conserved)
- \(P_{x \rightarrow y} \neq P_{y \rightarrow x} \) usually (Not symmetric! Can't diagonalize.)

Right eigenvectors: \(P \cdot \bar{p}_x = \lambda \cdot \bar{p}_x \)

Left eigenvectors: \(\sigma_x^T \cdot P = \lambda \sigma_x^T \)

- Math Truth: To each distinct eigenvalue, there is at least one left & right eigenvector.
Theorem 1: P has a right eigenvector p^* with eigenvalue one. (Stationary probability distribution $p^*_n = p^*$.)

Proof: P has a left eigenvector $\omega^T = (1, 1, ..., 1)$

\[
\omega^T P = \sum_x \omega_x P_{x\to y} = \sum_x p_{x\to y} = 1
\]

ω goes somewhere

So it must have a right eigenvector.

Theorem 2: P has no eigenvalues $|\lambda| > 1$.

Proof: Suppose p_λ, $|\lambda| > 1$, eigenvector.

First, $\sum_\lambda p_{\lambda} = \sum_\lambda (P p_\lambda)^\omega = \lambda \sum_\lambda p_{\lambda} \Rightarrow \sum_\lambda p_{\lambda} = 0.

Thus at least one element of $p_\lambda < 0$: let the most negative element be $-\frac{1}{A}$. Consider

\[
(p^* + \frac{\varepsilon}{A} p_\lambda)^n = P^n (p^* + \frac{\varepsilon}{A} p_\lambda) = p^* + \frac{\varepsilon}{A} \lambda^n p_\lambda
\]

Good probability distribution: positive for $0 < \varepsilon < 1$, $\sum p^* = 1$.

\Rightarrow eventually goes negative, contradiction.

\Rightarrow No $|\lambda| > 1$,
Markov chains can have more than one stationary probability distribution.

HW 3.1 has two eigenvectors with \(\lambda = 1 \). **Hint**

Energy conservation \(\rightarrow \) one \(p \) for each energy.

KAM theorem \(\rightarrow \) one \(p \) for each torus.

An ergodic Markov chain is one where every state \(\alpha \) can evolve into every other state \(\beta \) in a finite number of steps.

Theorem (too messy to prove here): An ergodic Markov chain has a unique stationary state \(p^* \), with right eigenvalue one.

All other eigenvalues < 1.

Theorem: If \(P \) is ergodic, then \(\lim_{n \to \infty} P^n p = p^* \) for any initial probability distribution \(p \).

Proof: \(p = p^* + \sum_{x} \alpha_x p_x \quad p^n p = p^* + \sum_{x} \alpha_x p^n_x \quad \to 0 \) as \(n \to \infty \)

True anyway.

Why bogus? Can't find complete set of right eigenvectors. (Can, if detailed balance assumed.)
One more specialization for stat mech:

Detailed Balance

A Markov chain satisfies detailed balance, if

$$p_{\alpha \rightarrow \beta} e^{-\frac{E_\beta}{kT}} = p_{\beta \rightarrow \alpha} e^{-\frac{E_\alpha}{kT}}$$

for some function E_β and all α, β.

Net flux $\alpha \rightarrow \beta$ equals flux $\beta \rightarrow \alpha$

$$p_\alpha = e^{-\frac{E_\alpha}{kT}} / Z$$

(Not true of magnetic systems, classical trajectories $x = p/m$)

To guarantee convergence to canonical ensemble, sufficient for computer algorithm to be

- Markovian (no memory)
- Ergodic (can reach everywhere)
- Satisfy detailed balance