The Canonical Distribution

Canonical reduced to the simplest or clearest schema possible

Closed System:
Microcanonical Ensemble

Likelihood of \(E_n \propto \) Total # of Bath States \(E^{(0)} - E_n \)
since all states of total system are equally likely.

\[
P_n \propto \Omega' (E^{(0)} - E_n) = e^{\frac{S'(E^{(0)} - E_n)}{k_B}}
\]

\[
\sim e^{\frac{S'(E^{(0)})}{k_B} - \frac{E_n(\partial S/\partial E)}{k_B}}
\]

\[
P_n \propto e^{-E_n/k_B T}
\]

Review: Definition of Temperature

Subsystem in Particular State \(E_n \)

Total System Energy \(E^{(0)} \)

Weak Coupling: \(E^{(0)} = E' + E_n \)

Gibbs distribution
Boltzmann distribution
Canonical distribution
\[P_n = \frac{e^{-E_n/kT}}{\sum_n e^{-E_n/kT}} \]
\[= \frac{e^{-E_n/kT}}{Z} \]
\[Z = \text{Partition Function} = \sum_n e^{-E_n/kT} = \sum_n e^{-\beta E_n} \]
\[\beta = \frac{1}{kT} \text{ useful, "beta" } \]

Calculating Stuff

Internal Energy
\[U = \langle E \rangle = \sum_n E_n P_n = \frac{\sum_n E_n e^{-\beta E_n}}{Z} \]
\[= -\frac{\partial^2 U}{\partial \beta^2} = -\frac{\partial \log Z}{\partial \beta} \]

Specific Heat "\(C_v \) per particle"
\[\frac{\partial U}{\partial T} = \frac{\partial U}{\partial \beta} d\beta + \frac{\partial U}{\partial T} dT = \]
\[= -\frac{1}{kT^2} \frac{\partial}{\partial \beta} \left(\frac{\sum_n E_n e^{-\beta E_n}}{\sum e^{-\beta E_n}} \right) \]
\[= -\frac{1}{kT^2} \left[\frac{\sum_n E_n^2 e^{-\beta E_n}}{Z} + \frac{(\sum_n E_n e^{-\beta E_n})^2}{Z^2} \right] \]
\[= \frac{1}{kT^2} \left[\langle E^2 \rangle - \langle E \rangle^2 \right] \]

\[\sigma_E = \sqrt{\langle E^2 \rangle - \langle E \rangle^2} = \sqrt{N \left[\frac{1}{(kT)(c_0 T)} \right]} \]

\[\frac{1}{c_0 T} \sim 10^{-11} \]
- **Fluctuations in Energy**
 \[\leftrightarrow \text{Specific Heat} \]
 \[(\text{Susceptibility of Energy}) \]

- **RMS Fluctuations**
 \[\frac{\sigma E}{E} \times \frac{1}{\sqrt{N}} \sim 10^{-11} \]

 \[\rightarrow \text{Canonical } \& \text{ Microcanonical} \]

Entropy

\[S = -k_B \sum P_n \log P_n \]

\[= -k_B \sum \frac{e^{-\beta E_n}}{Z} \log \left(\frac{e^{-\beta E_n}}{Z} \right) \]

\[= +k_B \sum e^{-\beta E_n} \left(\frac{\beta E_n + \log Z}{Z} \right) \]

\[= k_B \beta \langle E \rangle + k_B \log Z \sum e^{-\beta E_n} \]

\[= \frac{\langle E \rangle}{T} + k_B \log Z \]

\[-k_B T \log Z = \langle E \rangle - TS \]

- Connects Back to

 Helmholz free energy \(A \)

 (HW 2.9)
Thermo: Everything calculated from derivatives of $A(T, N, V)$

Stat Mech: Everything averaged over states P_n

$$U = \langle E \rangle = \frac{\sum E_n e^{-\beta E_n}}{Z} = -\frac{\partial Z/\partial \beta}{Z} = -\frac{\partial \log Z}{\partial \beta}$$

$$A = -k_B T \log Z$$

$$= k_B T^2 \frac{\partial}{\partial T} \left(\frac{-A/k_B T}{k_B T} \right)$$

$$= k_B T^2 \left(\frac{A}{k_B T} - \frac{1}{k_B T} \frac{\partial A}{\partial T} \right)$$

$$= A + T \frac{\partial A}{\partial T}$$

$$A = U + T \frac{\partial A}{\partial T} \quad \text{in} \quad -S?$$

$$dU = TdS - PdV + \mu dN$$

$$dA = dU - d(TS)$$

$$= -SdT - PdV + \mu dN$$

$$\frac{\partial A}{\partial T} = -S \quad \checkmark$$