Statistical Mechanics:
Probability $\rho(S)$ to be in state S.

Ising model: $S = \{S_i\}$,
Sites i on a (square) lattice $i = (x, y)$,
Spins $S_i = \pm 1$.

Equilibrium statistical mechanics:
Energy $E(S)$,
Boltzmann probability distribution
$\rho(S) \propto \exp(-E(S)/k_B T)$.

High temperatures:
States have equal weight
Low temperatures:
Low-energy states predominate

Ising model:
$E(S) = -\sum_{\langle i, j \rangle} J S_i S_j$,
Lowest energy state ($J > 0$), all spins up (+1) or down (-1)
Broken symmetry ferromagnetic phase
High temperature, *paramagnetic* phase
Transition at T_c: fluctuations
Markov chain:
 Dynamics for statistical models
 Transition rate $P_{S'S}$ from S to S'
 Markovian: independent of history

Markov chain properties:
 Detailed Balance:
 Equilibrium flux $S \rightarrow S' = \text{flux } S' \rightarrow S$
 $P_{S'S} \cdot \rho(S) = P_{SS'} \cdot \rho(S') =$
 Ergodic: Every state can be reached

A Markovian model that is ergodic and satisfies detailed balance will eventually approach equilibrium.

Ising model dynamics:
 Heat bath:
 Pick a spin at random, measure flip ΔE
 Equilibrate it to it’s current environment
 Metropolis
 Pick a spin at random, measure flip ΔE
 If $\Delta E < 0$, flip down
 If $\Delta E > 0$, some chance to flip up
 Wolff algorithm
 Clever generation of cluster flips
 Vastly faster dynamics near T_c
 Satisfies detailed balance, plus magic
Continuous-time; Bortz/Kalos/Lebowitz
Keep lists of spins in different environments
Calculate total rate to flip
Find which spin environment flips next
Flip random spin in that environment
Vastly faster at cold temperatures
Preserves dynamics (coarsening)