NP-completeness, computational complexity, and phase transitions: kSAT and Number Partitioning

Phys 7682 / CIS 6229: Computational Methods for Nonlinear Systems

• Computational complexity
 - study of how resources required to solve a problem (e.g., CPU time, memory) scale with the size of the problem
 - e.g., polynomial time algorithm \(t \sim N \log N, t \sim N^2 \) vs. exponential time algorithm \(t \sim 2^N, t \sim e^N \)

• Complexity classes
 - P: set of problems solvable in time polynomial in problem size on a deterministic sequential machine
 - NP (non-deterministic polynomial): set of problems for which a solution can be verified in polynomial time
 - NP-Complete: set of problems that are in NP, and are NP-hard (i.e., that every other problem in NP is reducible to it in polynomial time)
 ‣ a polynomial time algorithm to solve one NP-complete problem would constitute a polynomial time algorithm to solve all of them
 ‣ no known polynomial time algorithms for NP-complete problems
 ‣ exponential runtimes consider worst case scenario; increasing interest in typical case complexity
NP-complete problems

- Thousands of problems proven to be NP-complete (see, e.g., Garey and Johnson, *Computers and Intractability*, or Skiena, *The Algorithm Design Manual*)
 - typically phrased as “decision problems” with yes/no answer
- **Satisfiability (SAT):** given a set U of boolean variables, and a set of clauses C over U, is there a satisfying truth assignment for C?
- **Partitioning:** given a finite set A and a size $s(a) \in \mathbb{Z}^+$ for each $a \in A$, is there a subset $A' \subseteq A$ such that $\sum_{a \in A'} s(a) = \sum_{a \in A-A'} s(a)$?
- **Traveling Salesman:** given a set C of m cities, distance $d(c_i,c_j) \in \mathbb{Z}^+$ for each pair of cities $c_i,c_j \in C$, and a positive integer B, is there a tour of C having length B or less?
- **Graph K-colorability:** given a graph $G=(V,E)$, and a positive integer $K \leq |V|$, is G K-colorable, i.e., does there exist a function $f:V \rightarrow \{1,2,\ldots,K\}$ such that $f(u) \neq f(v)$ whenever $\{u,v\} \in E$?
- **Sequence Niche:** given a sequence $T \in \{0,1\}^L$, a set of sequences $C_i \in \{0,1\}^L$ for $i=1,\ldots,N$ and a positive integer $P \leq L$, is there a sequence $s \in \{0,1\}^L$ such that $|s-T| \leq P$ and $|s-C_i| > P$ for all $i=1,\ldots,N$?
kSAT

- **SAT (logical satisfiability)**
 - given a set of logical clauses in conjunctive normal form (CNF) over a set of boolean variables, is there a variable assignment that satisfies all clauses?

- **kSAT**
 - restrict all clauses to length k
 - NP-complete for all $k \geq 3$
 - in P for $k = 2$

- 2^N possible assignments for N variables
 - exhaustive enumeration only an option for very small systems

\[
(x_1 \lor x_2 \lor \neg x_4) \land \\
(x_2 \lor \neg x_3 \lor \neg x_5) \land \\
(x_3 \lor x_4 \lor x_5) \land \\
... \\
(x_4 \lor \neg x_8 \lor x_N) \\
\]

k variables per clause, N variables total

\land = AND,
\lor = OR,
\neg = NOT,
x_i = True or False
Some algorithms for kSAT

- Davis-Putnam (+ modifications)
 - complete: can determine whether or not there is a solution for any instance
 - recursive: set a variable, eliminate resolved clauses, call itself on reduced problem
 - either assignment or contradiction is found
 - backtrack if contradiction is found
 - lots of heuristics (variable ordering, MOMS, random restarts) to prune the exponential search tree

- WalkSAT
 - randomly flips variables in unsatisfied clauses
 - incomplete: cannot determine that there is no solution

- Survey Propagation (SP)
 - based on “cavity method” developed to study the statistical mechanics of spin glasses
 - fast, complicated, and incomplete

\[
\begin{align*}
(x_1 \lor x_2 \lor -x_4) \land \\
(x_2 \lor -x_3 \lor -x_5) \land \\
(x_3 \lor x_4 \lor x_5) \land \\
\vdots \\
(x_4 \lor -x_8 \lor x_N)
\end{align*}
\]

\(\land = \text{AND}, \) \\
\(\lor = \text{OR}, \) \\
\(- = \text{NOT}, \) \\
\(x_i = \text{True or False} \)
Phase transitions in random SAT problems

3-SAT

Kirkpatrick and Selman (2001)

solving 3SAT problems gets hard near the SAT-UNSAT transition

(# DP calls = # of recursive calls in Davis-Putnam algorithm)

Monasson et al. (1999)

2+p-SAT

fragmentation of solution space (hard SAT phase)

Mézard (2003)