Pendulum & the Walker: solving ODEs numerically

Phys 682 / CIS 629: Computational Methods for Nonlinear Systems

\[\frac{d\vec{y}}{dt} = f(\vec{y}, t) \]

- Simple pendulum
 \[\vec{F} = m\vec{a} \implies a = \frac{d^2\theta}{dt^2} = -\frac{g}{L} \sin \theta \]

- Can split second-order ODE into pair of first-order ODEs
 \[
 \frac{d\theta}{dt} = v \\
 \frac{dv}{dt} = -\frac{g}{L} \sin \theta
 \]

\[\vec{y} = (\theta, v) \quad \text{Solve for } y(t) \text{ given } y_0 \]
Discretization: accuracy, fidelity & stability

• Consider simple exponential decay: \[\frac{dy}{dt} = -Ay \]

• Euler step:

\[
\frac{y_{n+1} - y_n}{\Delta t} = -Ay_n \implies y_{n+1} = (1 - A\Delta t)y_n
\]

Accuracy:

\[
e^{-A\Delta t}y_n \approx (1 - A\Delta t)y_n + \frac{(A\Delta t)^2}{2!}y_n + \ldots
\]

Error in one step = \[
\frac{(A\Delta t)^2}{2}y_n \sim O(\Delta t^2)
\]

Error in interval \(T = N\Delta t \sim N\Delta t^2 \sim \frac{T}{\Delta t}\Delta t^2 \sim O(\Delta t) \)

Fidelity: If \(\Delta t > 1/A \), \(y(t) \) goes negative (unphysical)

Stability: If \(\Delta t > 2/A \), \(y(t) \) blows up
Pendulum & Walker

- **Pendulum**
 - prerequisite for the Walker
 - not the usual hints-plus-fill-in-the-blanks
 - explore accuracy, fidelity & stability for Hamiltonian system
 - use time-stepping algorithm that conserves an approximate energy (fidelity)

- **Walker**
 - simple model of bipedal walker (Ruina and coworkers)
 - double pendulum, fixed at stance foot
 - event detection (heel strikes)
 - integrating after change of variables
 - period-doubling bifurcations, leading to chaos
 - use of third-party ODE solver
 - new graphics module (not visual/vpython)
scipy.integrate.odeint \quad d\vec{y}/dt = f(\vec{y}, t)

\frac{d\theta}{dt} = v \quad \frac{dv}{dt} = -\frac{g}{L} \sin \theta

import scipy, scipy.integrate, pylab

def dydt(y,t,g,L):
 """return a list or array representing dy/dt, for vector y,
 current time t, and parameters g and L"""
 theta, v = y
 return [v, -(g/L)*scipy.sin(theta)]

g = 9.8; L = 1.
times = scipy.arange(0., 10., 0.1) # times for which y(t) is needed
y0 = [scipy.pi/4., 0.] # initial condition

y_trajectory = scipy.integrate.odeint(dydt, y0, times), args=(g,L))

args includes any additional arguments beyond required y and t

pylab.plot(times, y_trajectory[:,0]) # plot theta vs t
pylab.plot(y_trajectory[:,0], y_trajectory[:,1]) # plot v vs theta