The Higgs Boson

Darren Puigh
University of Washington
Presentation Outline

- The Standard Model
- The Higgs Mechanism
 - Higgs Field/Higgs Boson
 - Analogies
- Finding the Higgs Boson
 - LEP – Unconfirmed detection
 - LHC – Expected to find Higgs or set lower limit
 - How to make a Higgs
- Summary
Taking Things Apart

- Everyday objects made up of molecules
- Molecules made up of atoms
- Atoms made up of protons and neutrons
- Nucleons made up of quarks
- Why do quarks have different masses?
- The Higgs Boson!
The Standard Model

- Elementary Particles
 - Fermions
 - Quarks: 6 flavors
 - Leptons: 3 generations
 - Bosons - Force Carriers
 - Photon: EM
 - Gluon: Strong
 - W^\pm, Z^0: Weak
 - Graviton?: Gravitational
The Standard Model

- Elementary Particles
- Fermions
 - Quarks: 6 flavors
 - Leptons: 3 generations
- Bosons – Force Carriers
 - Photon: EM
 - Gluon: Strong
 - W^\pm, Z^0: Weak
 - Graviton?: Gravitational
The Standard Model From Scratch

- Start with the bosons (force carriers)
- Assume fundamental laws and symmetries of nature
 - i.e. charge conservation and certain gauge symmetries: $SU(3) \times SU(2) \times U(1)$
- All the interactions between the particles of the Standard Model are specified by the Lagrangian
- No mass term for gauge particles can occur in the Lagrangian to preserve symmetries
- Conclusion: All gauge particles must be massless
Experimental and Theoretical Problems

- Why can’t we let the bosons be massless?
 - Range of force inversely proportional to mass of exchanged particles
 - Range of weak interaction very short (~10^{-18} m), which corresponds to mass for exchanged particle

- Why can’t we just add in a mass term?
 - Addition of mass term is not gauge invariant
 - Gauge invariance crucial to avoid infinities in theory

- A solution to both problems: Spontaneous symmetry breaking
Spontaneous Symmetry Breaking in Ferromagnetism
Enter the Higgs Mechanism

- Introduce complex scalar field
- Ambiguous vacuum expectation value (vev)
- Higgs hides symmetry of weak and EM interactions
- Predicted existence of Z bosons
- Electroweak theory is renormalizable
A Theory With Potential

- Potential
 \[V(x,y,z) = (|H(x,y,z)|^2 - \nu^2)^2 \]
- Minimum and maximum:
 \[|H(x,y,z)|^2 = \nu^2 \text{ and } H = 0 \]
- Symmetry broken with \(H = \nu e^{i\phi} \)
- Use gauge transformation to make \(H \) a real field
- Expand about minimum state
 \[H(x^\mu) = (\nu + h(x^\mu))/2^{1/2} \]
- \(h(x^\mu) \) is the Higgs Field
Broken Symmetry

- Pencil with rotational symmetry
- Falls in some direction, breaking the symmetry
- Pencil represents the Higgs field
- Pencils coupled together; they all fall in same direction
- Their presence in vacuum influences waves traveling through it
Broken Symmetry

- Pencil with rotational symmetry
- Falls in some direction, breaking the symmetry
- Pencil represents the Higgs field
- Pencils coupled together; they all fall in same direction
- Their presence in vacuum influences waves traveling through it
Physics of Solids Analogy

- Solid contains lattice of positively charged crystal atoms
- Conduction electrons attracted to lattice atoms
- Electrons moving through lattice cause it to move as if they had large effective mass
The Higgs Mechanism
The Higgs Mechanism
The Higgs Mechanism
The Higgs Boson
The Higgs Boson
Mass of the Higgs Boson

- Dependent on mass of W boson and top quark
- New precision measure of top quark mass:
 - Top mass: $178 \pm 4 \text{ GeV/c}^2$
- Mass of Higgs Boson:
 - Lower limit: 114.4 GeV/c2
 - Upper limit: 251 GeV/c2
 - Most Probable: 117 GeV/c2
Possible Higgs Events at LEP

- ALEPH, DELPHI, L3, OPAL
- ALEPH found four Higgs candidates in fall 2000
- Data cannot be confirmed or ruled out
- $e^+e^- \rightarrow bbbb$
- Provided lower limit on Higgs Boson
Possible Higgs Events at LEP

- Distribution minimum at 114.9 GeV/c²
- Probability of being background fluctuation 0.4%
- Small number of events
- Currently have ~2.7σ effect
- Waiting for 5σ to claim discovery
Large Hadron Collider (LHC)

- Located at CERN
 - On border of France and Switzerland
- About 27 km or 16.5 miles in circumference
- Used for collisions involving:
 - Protons
 - Heavy ions (such as lead, achieving collision energy 1150 TeV)
- Expected to begin operation in 2007
Four Ways to Make a Higgs
Important Things to Remember

- Particles believed to acquire mass through their coupling with the Higgs field
- If it exists, the Higgs plays a role in unifying the weak and EM interactions
- The existence of the Higgs boson has never been confirmed, but the LHC is expected to find it if it is in-line with current theories
- Many theories require there to be a Higgs
For More Information

- **The God Particle**, Leon Lederman
- **The Fundamental Particles and Their Interactions**, William Rolnick
- http://hepwww.ph.qmw.ac.uk/epp/higgs.html