Quiz 4: Currents as Sources of Magnetic Field

A long, straight wire carries a current I out of the page, as depicted below. This current produces a magnetic field in the vicinity of the wire. In the plane of the page we draw an imaginary closed path composed of two straight segments (a and c) and two semi-circles (b and d) of radii R_2 and R_1. The orientation of this path is given by the arrow (\rightarrow) below a.

1. What is the magnitude of the magnetic field along segments b and d?

2. Write down the expression for the magnetic field along segment a in unit vector notation as a function of x (the wire is located at $x = 0$, so $R_1 < x < R_2$).
3. Let $d\mathbf{s}$ be an infinitesimal line element along the path. For each segment $(a, b, c, \text{ and } d)$, determine whether the dot product $\mathbf{B} \cdot d\mathbf{s}$ is positive (+), negative (−), or zero (0).

4. For each segment $(a, b, c, \text{ and } d)$, compute the line integral

$$\int \mathbf{B} \cdot d\mathbf{s}$$

along that segment. Express your answer in terms of I, R_1, R_2, and fundamental constants.

5. Without using Ampère’s law, compute the closed line integral

$$\oint \mathbf{B} \cdot d\mathbf{s}$$

around the entire path.

6. What does Ampère’s law predict for the value of the previous integral? Does this system obey Ampère’s law?