Resonant Origins for Pluto's High Inclination

Curran D. Muhlberger

University of Maryland, College Park

April 7, 2008

Introduction Planetary Migration Orbital Resonances

Goals

Explain Pluto's high eccentricity (e = 0.24) and high inclination ($i = 17^{\circ}$) using resonances

- Three candidates
 - 6:4 mean motion resonance
 - 1:1 secular resonance
 - 2:1 secular resonance

Introduction Planetary Migration Orbital Resonances

Planetary Migration by Scattering Planetesimals

- Planets other than Jupiter preferentially scattered planetesimals inward, migrated outward
- Migrations move locations of resonances, catching Pluto
- If migration rate is slow enough, characteristic effect on resonances is rate-independent

Introduction Planetary Migration Orbital Resonances

Orbital Elements & Symmetries

Orbital Elements: *a*, *e*, *i*, Ω , $\sigma = \Omega + \omega$, λ ($\dot{\lambda} \approx n$)

Secular Variables $h = e \sin(\varpi)$ $k = e \cos(\varpi)$ $p = \sin(i/2) \sin(\Omega)$ $q = \sin(i/2) \cos(\Omega)$

Eigenfrequencies: f, g

Introduction Planetary Migration Orbital Resonances

Resonant Behavior

Mean Motion Resonance

Simple ratio of orbital periods (dependent on λ , *n*)

Secular Resonance

Simple ratio of precession periods (averaged orbits)

- Form resonant arguments subject to symmetries
 - Good: $6\lambda_P 4\lambda_N 2\Omega_P$, $2\Omega_P \Omega_N \Omega_J$
 - Bad: $3\lambda_P 2\lambda_N \Omega_N$, $2\Omega_P \Omega_N$
- Capture
- Jump

Numerical Methods

Simulation and Analysis

Both of pre-existing and new software used throughout project.

- Used HNBody and HNDrag to simulate Solar System over billions of years (> 24 GB of data generated)
- To determine secular eigenfrequencies, wrote code to perform FFT on orbital elements
- Features of PowerSpectrumEstimator:
 - Data windowing to reduce spectral leakage
 - Overlapping data segments to minimize variance
 - Automatic peak finding with inverse quadratic interpolation
 - Removal of aliased peaks
 - Orthogonality of total angular momentum

Numerical Methods

Example: Outer Solar System *p* Spectra

Matches g_6 to better than 1%; matches g_7 to within 7%; matches g_8 to within 25%; g_5 is effectively 0

Spectra of 'p' for the Outer Solar System

Mean Motion Resonances Secular Resonances (1:1) Secular Resonances (2:1)

Candidate #1 – 6:4 Mean Motion Resonance

Pluto is currently trapped in a 3:2 eccentricity resonance $(3n_P - 2n_N - \dot{\sigma}_P)$ and a Kozai resonance $(\dot{\Omega}_P - \dot{\sigma}_P)$. Together, these imply a 6:4 inclination resonance $(6n_P - 2n_N - 2\dot{\Omega}_P)$.

- Initially, these were split (no Kozai resonance)
- Being first-order, eccentricity resonance is stronger
- Simulations rule out capturing in inclination resonance first
- What about afterwards?

Mean Motion Resonances Secular Resonances (1:1) Secular Resonances (2:1)

Examples of Mean Motion Resonances

Migration rates too slow, inclination rise too small

Curran D. Muhlberger Resonant Origins for Pluto's High Inclination

Mean Motion Resonances Secular Resonances (1:1) Secular Resonances (2:1)

Candidate #2 – 1:1 Secular Resonance

A 1:1 resonance $(\dot{\Omega}_P - \dot{\Omega}_N)$ should be easier to find and more powerful than a 2:1 resonance.

- Studied an idealized Jupiter+Neptune+Pluto system
- May have been present at Solar System formation
- Could capture into 3:2 mean motion resonance at just the right time, maintain high inclination

Conclusions

Mean Motion Resonances Secular Resonances (1:1) Secular Resonances (2:1)

Example of 1:1 Secular Resonance

Static inclination resonance extremely broad and powerful (3 AU, 25 $^{\circ})$

Mean Motion Resonances Secular Resonances (1:1) Secular Resonances (2:1)

Secular Resonances in the Solar System

In full Solar System, 1:1 resonance is not as broad or powerful. Still, migrating across makes jump or capture possible.

- Inclination jump of 10° observed near initial conditions
- Capture raises more questions: when/how did it break out?
- Leaves observed 2:1 resonance a coincidence

Early proximity to 1:1 indicates that 2:1 was not active prior to capture in eccentricity resonance.

Mean Motion Resonances Secular Resonances (1:1) Secular Resonances (2:1)

Candidate #3 – 2:1 Secular Resonance

By raising $M_U \rightarrow 1.8M_U$, we could create conditions where $2p_1 \approx g_8$. By dragging Pluto directly, we could study strength of jump and capture.

- Raising $M_U \iff$ increasing Uranus's initial position
- Jump is too weak (2°) to explain current inclination
- What about capture?

Secular Resonances (1:1) Secular Resonances (2:1)

Example of 2:1 Capture

Spectra of 'p' for the Outer Solar System: Initial

Capture is possible! Yields $i \rightarrow 16^{\circ}+$

Mean Motion Resonances Secular Resonances (1:1) Secular Resonances (2:1)

Active Resonances in 2:1 Capture

Curran D. Muhlberger Resonant Origins for Pluto's High Inclination

Summary

Currently, no overwhelmingly likely explanation. However, some can be ruled out while others can be constrained.

Resonance	Grade	Pros	Cons
Mean Motion	D	Currently active	Could not capture Too weak
Secular 1:1	В	Strong enough Possibly active in early solar system	Not active today Large jump instead of capture
Secular 2:1	B+	Possibly active today Capable of capture	$M_U ightarrow 1.8 M_U$ Dragging Pluto, not Neptune

