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1 Preface

This lecture notes are based on a TASI course given by Sekhar Chivukula If you have
any corrections please let me know at ajd268@cornell.edu.

2 Setting the stage

2.1 What is compositeness?

Lets first better understand the theory we are familiar with, QCD. It certainly has com-
positeness. The low energy degrees of freedom are shown below,
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Looking at this spectrum we see a charactoristic mass scale associated with the heavy
particles (in this case around 1GeV) and then there is an anomalously light object (in this
case the pion). So we see a hierarchy between the two scales. The questions immediately
arises, what is the natural scale of the theory? Is it associated with the pions or the high
energy states.

One thing we can do is take electrons and scatter them off a pion,

e

e

and look at the form factor. The proton isn’t actually a point like object, its Rutherford
cross section isn’t simply the 1/q2 you’d expect. Its got a form factor contribution that
we can measure. This form factor has a scale in it and its roughly given by Λ ∼ GeV.
This is another reason to beleive that the fundamental scale is around a GeV and the
pion is the one that doesn’t belong. The fundamental scale is associated with lots and
lots of resonances.

The signitures of compositeness are,

• Hierarchy of scales

– Some light states, why?

• Resonances

– Many whose scale is of order the fundamental scale of the theory

We’d like to understand to explain the presense of the multitude of states in terms of a
few.

Our goal is that we’d like to construct a theory with some fundamental scale, Λ, with
a higgs-like object, X, whose mass obeys,

mX

Λ
� 1 (1)

The claim is that if you can arrange this hierarchy then the properties of the particle will
look a lot like the higg’s boson.

The question then is why would this state be light? There are two known possibilities,

1. Symmetry - if you have an approximate spontaneously broken symmetry we should
find pseudogoldstone bosons

2. Tuning - there is some adjustment or coincidence of parameters that causes param-
eters to be small
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2.2 Effective field theory

Before we move on to effective field theory (EFT), we should understand why we use
quantum field theories (QFT) in the first place. QFT reconciles quantum mechanics and
relativity and produces a unitary scattering matrix (S-matrix). If you start with a QFT
that’s consistent and you calculate scattering amplitudes you will find an S matrix that
is unitary, CPT invariant, etc.

Landau’s insight was if we start with an S-matrix, maybe we should be able to go
back to some QFT,

Experimental
S-matrix

Theoretical
QFT description Predictions

The important thing to remember is that the theoretical description is in general, not
unique. All descriptions will agree on the symmetries or conserved quantities of the
theory, but they don’t have to agree on redundant variables (gauge symmetries) and the
“fundamental” degrees of freedom (what fields you choose to write your description in).
This means that in general the coupling constants that we use are generally not physical.

When we work with for example QED, we talk about the electric charge as though
its a physical quantity, but the charge that appears in the calculation is not a physical
quantity. It depends on the definition that we use.

The take away moral is that “fundamental” vs “composite” is not a very useful de-
scription since what may seem fundamental in one description, may not be fundmental
in another. The real criteria should be “strong” vs “weak”. Almost all our intuition for
QFT has to do with the weakly coupled side of QFT. In a weakly coupled QFT there
is a 1 − 1 relationship between the fields in the theory and assymptotitc states in the
S-matrix. We actually collide and measure objects. If we have a QFT description that
corresponds to the states that we see, that’s what we normally mean by weakly coupled
theory. In a strongly coupled theory there is not necessarily any relationship whatsoever
between the particles you write in your Lagrangian and the degrees of freedom that you
see.

2.3 QCD

We now see how this works in QCD. QCD is usually written as an SU(3)c color gauge
theory of quarks. This is weakly coupled at energies, E � GeV. At low energies, we
need to construct an entirely different description of QCD, which is described by,

π,K, η (2)

This is the effective chiral Lagrangian of QCD. You can go further and add extra particles
if you want such as the vector mesons (e.g., the ρ meson). This description makes sence
if mvector/Λ � 1. It isn’t apriori clear that this approximation has any validity, but it
turns out that this can be done in principle. You can go on and add more and more
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particles, however as you do that your predictably gets worse and worse since you have
to measure more effective coupling constants to make predictions.

Its possible that there is a different description of QCD such as a string theory in 5D.
But these are all the same theory, the theory of the strong interactions.

If we are in the situation where we have an object thats light compared to its fun-
damental dynamical scale, we’d like to understand what are the general properties of an
effective field theory that describes such an object.

2.4 Scalar

Suppose we have a theory with a light, complex, scalar particle, φ, with a fundamental
scale, Λ. What is the most general effective theory?

LΛ = ∂µφ
∗∂µφ−m2φ∗φ− λ(φ∗φ)2 +

κ

Λ2
(φ∗φ)3 +

()

Λ2
(φ∗∂φ)2 + ... (3)

At first sight this seems hopeless. The most general Lagrangian you can write down has
higher and higher derivatives of higher and higher order.

Suppose however, that you were interested in p� Λ. As an example lets consider the
calculation of 2→ 2 scattering,

= λ+ () p
2

Λ2 + () p
4

Λ4 + ...

In the limit that the momenta are small, the dominant interaction is given by the self
coupling, λ.

However, there is an issue with this analysis. We haven’t taken into account contri-
butions from loops. In principle we have diagrams such as,

But the theory is only defined with some highest momenta Λ in it. Since we are interested
in p � Λ, we can integrate out all the high energy momentum modes. In reality all the
parameters in the Lagrangian depend on how you define the theory,

LΛ = ∂µφ
∗∂µφ−m2(Λ)φ∗φ− λ(Λ)(φ∗φ)2 +

κ(Λ)

Λ2
(φ∗φ)3 +

()

Λ2
(φ∗∂φ)2 + ... (4)

The parameters in your theory are defined at momentum scale Λ.
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Suppose you imagine that you integrate out the momentum modes between Λ and a
smaller scale, Λ′ < Λ. Formally we write,

eSΛ′ =

∫
DφΛ′<p<Λe

SΛ (5)

The arguement that we made earlier for the most general form for the Lagrangian also
applies at the scale Λ′,

LΛ′ = ∂µφ∗∂µφ−m2(Λ′)φ∗φ− λ(Λ′)(φ∗φ)2 +
κ(Λ′)

Λ′2
(φ∗φ)3 (6)

That means that the parameters that define the theory flow,

m2(Λ)→ m2(Λ′)

λ(Λ)→ λ(Λ′)

κ(Λ)→ κ(Λ′)

...

You can do the functional integral to get SΛ′ perturbatively, but that’s only going to be
valid in the weak coupling regime. But there is nothing about this arguement that is
perturbative.

We would like to understand what these flows look like. Unfortunately, we have an
infinite number of coupling constants which we want to track their value as Λ changes,
as so its hard to draw them all at once. For this reason we restrict ourselves to just 3
couplings.

Lets think what happens to each coupling. κ is particularly easy at tree level,

κ(Λ′) =
Λ′2

Λ2
κ(Λ) + ... (7)

The mass squared gets an additive correction. To see this consider the Coleman-Weinberg
1 loop potential. This is computed by calculating all the one loop contributions and
adding them to the Lagrangian. In particular the mass squared becomes,

m2(Λ2) + ()Λ2 (8)

due to the diagram,

Comparing to the result for Λ′ we have,

m2(Λ′2) = m2(Λ2) + ()(Λ2 − Λ′2) (9)
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The most interesting thing is the behavoir of the coupling at one loop. The coupling
goes as,

1

λ(Λ′)
=

1

λ(Λ)
+

b

(4π)2
log

Λ′

Λ
(10)

[Q 1: Confirm this still holds in the Coleman-Weinberg potential.]
In summary as Λ′ is decreased (we go to lower energies), the mass increases rapidly,

κ drops rapidly, and λ stays roughly the same. Diagramatically we have,

κ

m2

λ

This flow diagram displays a few very general features of flow diagrams,

1. κ(Λ) → 0 as Λ′ → 0. These interactions are called irrelevant operators. They are
the ones whose effects scale to 0 at low energies.

We see that we started out with the Lagrangian which had an infinite number of
parameters. If we scale far enough we can parametrize everything in terms of just
two parameters, m2 and λ. This is known as renormalizability (universality in
condensed matter literature).

You’re quantum field theory is determined at some point in an infinity dimensional
coupling space. But luckily, you don’t live at the cutoff, but at some low energy.
And all the coupling flow to some low energy (Λ′) manifold. The dimensionality of
the manifold is precisely the same as the number of renormalization constants in
the theory. This is a non-perturbative view of a QFT.

2. Until now we’ve been thinking about Λ fixed and p going to zero. However, we
can also think about p fixed and Λ going to infinity. In this limit λ → 0 in the
infrared. This is called triviality. This means that a self-interacting scalar theory
doesn’t have a continuum limit, or more precisely that the continuum limit is free
field theoy.

This says that the higgs theory is an effective low energy theory whose cutoff de-
pends inversely exponentially on the mass of the higgs. In particular, if you want to
higgs coupling to remain coupling positive up to the GUT scale, then the higgs bet-
ter be lighter then 180GeV. Because the running is exponential instead of algebraic,
triviality is a question that can be pushed very far away.
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Its easier to see why this is an issue if we consider starting at electroweak energies
and extrapolating the coupling to high energies,

λ(µ) =
λ(v)

1− 3λ(v)
(4π)2 log p2

v2

(11)

The running is shown below,
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3. The m2(Λ) becomes very large. This is known as the hieararchy problem. The flip
side of this problem is the fine-tuning problem.

Naturalness means if you start at some generic point in the renormalization group
parameter space, where do you end? A natural theory says that no matter where
you are in this parameter space you end up at around the same point. But, since
m2 →∞, m = 125GeV does not look natural.

If for example, Λ → 100TeV, the natural mass scale is 100TeV. If you want
m = 125GeV, it seems that you are forced to have Λ ≈ 100GeV.

If on the other hand you demand that Λ = 1015GeV, for example. Then in order
to get to 125GeV at low energies you have to start in a very particular point in
parameter space. This is usually quantified by saying the spread of available points
at high energies that will give the correct higgs mass if very small,

∆m2

m2
� 1 (12)

2.5 The higgs

All descriptions of nature are effective field theories. We are going to construct them
order by order in expansions in the couplings, (p2/Λ2)α. The big question will be what
is the relevant scale?
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Consider the higgs boson,

L = Dµφ†Dµφ−
λ

4

(
φ†φ− v2

2

)2

(13)

We have an object φ that is 2+1/2 under SU(2)L × U(1)Y . Viewing this as an effective
theory we should be able to add other terms,

L = Dµφ†Dµφ−
λ

4

(
φ†φ− v2

2

)2

+ ()
φ†φ

Λ2
+ ()

(φ†Dµφ)2

Λ2
(14)

If we take the point of view that this object that we’ve seen is part of an SU(2)×U(1)Y
scalar doublet then we are not just going to have a dimension 4 piece, we’re going to have
higher order corrections as well.

This way of writing the Lagrangian doesn’t impose all the relevant symmetries that
we need to keep track of. In particular it doesn’t impose the custodial symmetry. All the
dimension 4 pieces in the limit that we set g, g′ → 0 there is a larger global symmetry,
SU(2)×SU(2) symmetry. Its useful to rewrite the Lagrangian in a different way to show
that.

A simple way to see that is to write the higgs as,

φ =

(
π1 + iπ2

φ3 + iπ4

)
(15)

Then you see that,
φ†φ = π2

1 + π2
2 + π2

3 + π2
4 (16)

This is an O(4) symmetry, which is equivalent to SU(2) × SU(2). To rewrite this we
can introduce, φ̃ = iσ2φ

∗. Because the 2 of SU(2) is a pseudoreal representation (or
equivalently because σ2 commutes only with itself and not σ1 or σ3, you can show that
φ̃ transforms as a 2−1/2 under SU(2)× U(1). Since they are both doublets, you can put
them together into a 2× 2 complex matrix that is a doublet as well,

Φ ≡
(
φ̃ φ

)
(17)

We can perform a SU(2) transformation through,

Φ→ LΦ (18)

where L is an SU(2)L transformation matrix in the same way we did before. Further-
more, we introduce a second matrix to perform the U(1)Y phase rotation. Since φ and
φ̃ have opposite hypercharges, we can use the T3 component of an additional SU(2)
transformation, R.

We can write this transformation as,

Φ→ LΦR† (19)
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An arbitrary 2× 2 matrix has 8 degrees of freedom while this one only has 4, so there is
a very special constraint that is satisfied by this,

Φ†Φ = φ†φ1 (20)

So this 2× 2 complex matrix actually can be written as,

Φ = ρ(x)Σ(x) (21)

where, ρ(x) is a real positive scalar and Σ(x) is a 2 × 2 SU(2) matrix. The degrees of
freedom add up since an SU(2) matrix has 3 degrees of freedom.

With this machinery the kinetic Lagrangian can be written,

Dµφ†Dµφ =
1

2
TrDµΦ†DµΦ (22)

where,
DµΦ ≡ (∂µ + gW a

µT
a)Φ(g′BµT3) (23)

[Q 2: Check this.]
Furthermore we have,

(φ†φ− v2

2
)2 =

1

2
Tr

(
Φ†Φ− v2

2

)2

(24)

Having written it in this way you can see that this is actually invariant under a full set
of global SU(2)× SU(2) transformations,

Φ→ LΦR† (25)

Further, if we choose the right basis we can write,

〈Φ〉 ∝
(

1 0
0 1

)
(26)

Which means that SU(2)L×SU(2)R breaks to a vector global symmetry that remains,
SU(2)V . Its the SU(2)V symmetry that protects all the low energy quantities, but in
order to get this symmetry you need SU(2)R to start with.

3 Effective models

3.1 Nambu-Tona-Lasinio model

The Nambu-Tona-Lasinio (NJL) model was originally a model of chiral symmetry break-
ing in QCD but we’ll describe it as a theory of EWSB. Consider the Lagrangian,

LΛ = Lgauge + ψ̄Li /DψL + t̄Ri /DtR −
4π2κ

Λ2

(
ψ̄iLtR

) (
t̄Rψ

i
L

)
(27)
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where ψL ≡ (tL, bL)T is the SU(2) 3rd generation doublet (quantum numbers, 2+1/6)and
tR is the right handed top (quantum numbers, 1+2/3). The local SU(3) gluon interaction
has been “integrated out” and absorbed in the four-fermi operator. This Lagrangian is
only invariant under SU(2)× U(1)!

This is an easy theory to solve this model in the largeNc approximation. Its convenient
to redefine κ→ κ/Nc such that,

LΛ = Lgauge + ψ̄Li /DψL + t̄Ri /DtR −
4π2κ

Λ2Nc

(
ψ̄iLtR

) (
t̄Rψ

i
L

)
(28)

We would like to do this such that one-loop contributions will have the same size as tree
level contributions. So κ ∼ 1 is strong coupling (1 loop processes are the same order as
tree level processes).

We are going to solve this by “bosonization” - introduce an auxilary field, φ, which is
a higgs-doublet like object given by

(4π)2

Λ2

√
κ

Nc

t̄Rψ
i
L (29)

(quantum numbers, 2−1/2). We can then rewrite the interaction Lagrangian for the field
as 1

Lint = − Λ2

4π2
φ†φ+

√
κ

Nc

ψ̄iLtRφi + h.c. (31)

At this point we haven’t done anything.
Its interesting to note that initially the Lagrangian appeared nonrenormalizable and

now suddenly it looks renormalizable. But this is deceiving.
This is because we need to differentiate between mass dimension and scaling dimen-

sion. Scaling dimension is really what counts, its what determines the order of divergence
of loops in perturbation theory.

Mass dimension of this field is clearly equal to 1. However, it has a different scaling
dimenson. The scaling dimension is determined by how fast its propagator falls at high
momentum.

When we say a scalar field has scaling dimension 1, what we really mean that in
perturbation theory at high momentum its propagator falls like 1/p2. For an ordinary
scalar field its mass dimension is equal to its mass dimension.

If we look at the propagator for φ, its given by, ∼ 4π2/Λ2. If we put it in a loop,

φ

∼ 4π2

Λ2

∫
d4k

1Finding the equation of motion gives,

Λ2

4π2
φ†φ =

√
κ

Nc

1

2

(
ψ̄tRφ+ h.c.

)
=

4π2

Λ2

κ

Nc
ψ̄tRt̄Rψ (30)
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Then its quartically divergent.
Now we are going to solve the interaction in the limit that Nc →∞, so we only keep

the leading order terms.
The simplest thing to compute is the effective potential for the field, φ. You can

convince yourself that the only diagrams that contribute are,

φ
t

t

φ
+ ...

Thats because if we try to put any other φ across the top loop, then you introduce
additional powers of Nc.

We can calculate this result exactly and is given by [Q 3: calculate this.],

Veff (φ) =
Λ2

4π2
(1− κ)φ†φ+

κ2

4π2
(φ†φ)2

[
log

(
NcΛ

2

φ†φ

)
+

1

2

]
(32)

This is regardless of the value of κ, the expansion is controlled by 1/Nc.
If you look at this potential, it has a very interesting property. You can look at

the value for the expectation value of the field as a function of coupling strength [Q
4: Calculate this.],

〈φ〉
Λ

κ
1

0

1

SU(2)×U(1)

unbroken SU(2)×U(1)

broken

In the language of condensed matter field theory this is a 2nd order phase transition,
meaning that the order parameter (in our case κ) changes continuously but its derivative
does not. When φ gets a VEV, this gives the top a mass. Thus κ parameterizes the
SU(2)× U(1) phase transition. In the broken symmetry region,

〈φ〉 ∝ Λ
√
κ− 1 (33)

What we want to understand is what is the effective field theory near κ ≈ 1+ (for κ
slightly less than 1)?

Lets consider the full two-point function for φ,

p

t

t

p
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Computing this one can show that the wavefunction renormalization function for φ is
given by,

Zφ ≈
κ

4π2
log

∣∣∣∣ 1

κ− 1

∣∣∣∣ (34)

[Q 5: show this.] Having wavefunction renormalization, implies that we have a kinetic
energy contribution! We started with a field φ which had no momentum term, but we’ve
generated a kinetic energy for φ with momentum. We have a kinetic term,

Lkineff ∼
κ

4π2
∂µφ∂

µφ (35)

Now lets see the spectrum of the theory as a function of κ:

m2φ
Λ2

κ

1

π’s

hφ

t

0

Below κ = 1 (when 〈φ〉 = 0), we have the full higgs-like doublet. Above this scale, the
doublet gets a VEV which breaks the symmetry. On the symmetry broken side we have
a single scalar with 3 goldstone bosons. Near the phase transition we have a light scalar.
[Q 6: Expand the logarithm properly and find the π masses.] This VEV also gives a mass
to the top quark.

We see that the spectrum varies continuously. This is a hallmark of a second order
phase transition. If we tune κ close to 1 but slightly greater than 1. Then we find,

∆κ

κ
=
κ− 1

κ
≈ O

(
m2
h

Λ2

)
(36)

So if we want mh ∼ 125GeV and Λ ∼ 10TeV then we have to adjust κ,

∆κ

κ
≈ O

(
100GeV

10TeV

)4

∼ 10−4 (37)

So with this complicated mechanism we’ve reproduced the hierarchy problem.
This is a theory with a composite higgs boson. It is in the same universality class as

the SM. You could argue that all we’ve done is rewrite the SM in a bizarre way.
One may worry about the phenomenology of such a modification to the SM. The

most important low energy effects are always going to be symmetry violating effects. In
particular, our composite higgs model has a term which violates custodial symmetry,√

κ

Nc

ψ̄iLtRφi (38)
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The measure of custodial symmetry in the SM is given by the ρ parameter:

ρ ≡ M2
W

M2
Z cos2 θw

(39)

The higher dimensional operator,
(φ†Dµφ)2

Λ2
(40)

gives rise to violations of the ρ = 1 relation,

∆r ≡ ρ− 1 ≈ O
(
v2

Λ2

)
(41)

The ρ parameter is known to about 0.1% giving Λ & 10TeV. This was the reason we
chose Λ ≈ 10TeV.

Lets now match parameters,

1. Scale Λ: Λ, κ

2.

3.2 QCD chiral Lagrangian

The QCD Lagrangian for the 3 light quarks is given by,

L =QCD= Lgauge + ψ̄Li /DψL + ψ̄Ri /DψR − ψ̄LMψR − ψ̄RM †ψL (42)

where ψ ≡ (u, d, s)T . We chose to write the mass matrix as,

M =

 mu

md

ms

 (43)

In the limit that M goes to zero we have a new symmetry,

SU(3)L × SU(3)R (44)

This is known as a chiral symmetry. One of the amazing properties of QCD is that the
vacuum of QCD changes non-perturbatively. We’re used to the of a changing vacuum in
the higgs model. In QCD we have,

〈ūLuR〉 =
〈
d̄LdR

〉
= 〈s̄LsR〉 6= 0 (45)

Note that nothing distinguishes the different flavors as M → 0 so the expectation values
of the different flavors must be the same.

This means that spontaneously the dynamics of QCD breaks the chiral symmetry,

SU(3)L × SU(3)R → SU(3)V ≡ SU(3)L+R (46)
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This is an SU(3) symmetry that transforms the left and right handed quarks in the same
way.

The initial theory has 8 + 8 = 16 preserved generators, while the broken theory only
has 8. Thus we expect there to be 8 massless goldstone bosons in the limit that M → 0.

Recall that we can write a complex scalar matrix Φ with 9∗2 = 18 degrees of freedom
as a radial hermitian part multiplied by a unitary matrix 2,

Φ = H(x)Σ(x) (47)

If you really look at this theory naively, it seems to have an additional axial U(1) sym-
metry. This axial U(1) symmetry is explicitly broken due to an anomaly in QCD. With
that in mind we can set the degrees of freedom in H(x) to be infinitely massive. We
could try to write down a description of these, but there is no gaurentee these even exist.
We have no reason to expect these to be light. The lowest order term is then,

L =
f 2

4
Tr∂µΣ†∂µΣ (48)

The only restriction on Σ(x) is that it must be unitary. A convenient representation
is,

Σ(x) = exp

(
2iπaT a

f

)
(49)

where T a are the broken generators of the theory and obey, TrT aT b = 1
2
δab.

We’re used to the idea of spontaneous symmetry breaking in the higgs potential.
There we have a mexican hat potential, which has a radial direction and an angular
direction. The angular direction, is the vacuum manifold of the theory. The goldstone
bosons parametrize coordinates along the vacuum manifold since moving along those
direction don’t cost any energy.

The goldstones bosons in general are fields which map from our space time into what-
ever the vacuum manifold is for whichever symmetry we are talking about. In our case
they map,

R
3,1 → SU(3)L × SU(3)R

SU(3)V
(50)

This is a very special example of a general phenomena of what’s known as a non-linear
sigma model. In such models you have fields, {πi}, which parameterize coordinates of a
vacuum manifold.

The most general Lagrangian you can write down is,

L = ηµνgij(π)∂µπ
i∂νπ

j (51)

In our representation the unitary field tranforms linearly,

Σ→ LΣR† (52)

2Since each part has 9 degrees of freedom, this is the most general definition one can make.
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This makes it easy to write down and figure out what terms are invariant.
One may wonder why we didn’t just write out the transformations in terms of the

fields themselves. That’s because the golstones don’t transform linearly. On the other
hand for the preserved symmetry, the π’s transform homogeneously,

πaT a → V (πaT a)V † (53)

But if you think about doing an infinitesimal left handed transformation by a parameter
εa, given by,

L = exp

(
2iεaT a

f

)
(54)

To leading order in εa we have,

LΣ(x) =

(
1 +

2iεaT a

f

)(
1 +

2iπaT a

f

)
+ ... (55)

which corresponds to a shift in the goldstones,

πa → πa + εa (56)

This is one of the charactoristic features of the goldstone boson. Under the broken global
symmetry, the πa transforms inhomogeneously through a displacement. This symmetry
is what forbids writing down a mass for the goldstone bosons.

3.3 Spurion analysis

A spurion analysis is just a manifestation of the Wigner Eckart theorem. All it says is
that the mass term breaks transformations independently under the left and right handed
rotations, but if we consider the transformation L ∈ SU(3)L, R ∈ SU(3)R and we replace,

M → LMR† (57)

all at the same time then the form of the Lagrangian should not change. All we’re doing
is trying to consistently figure out how M breaks the SU(3)L × SU(3)R symmetry and
put that back into the Lagrangian. We’re going to assume that M is small, so the leading
terms will be ones with the smallest number of terms.

Said another way, we know the Lagrangian should be invariant under SU(3)L×SU(3)R
when M transforms. To keep this behavoir in the low energy theory we only write down
terms that our invariant under this transformation.

The symmetry breaking terms are given by,

LSB =
µf 2

2
TrΣ†M + h.c. (58)

The pion field is given by,

π = πaT a =


π0

2
+ η√

2
π+
√

2
K+
√

2
π−√

2
− π0

2
η√
2

K0
√

2
K−√

2
K̄0
√

2
−η

3

 (59)
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The 8 light mesons are an isotriplet, {π0, π+, π−}, an isosinglet, η, and a complex doublet,{
K+, K−, K0, K̄0

}
.

Plugging this into LSB, you can calculate the masses of the pions, eta, and kaons.
Working in the limit that mu = md ≡ m we have,

m2
π = µ(2m) (60)

m2
η =

4µ

3
(ms + ...) (61)

m2
K = µ(ms +m) (62)

If you work in this limit you find that π0 and π+ have the same mass. This isn’t true in
reality due to an essential missing ingredient, electromagnetism.

3.4 Electromagnetism

Firstly we note that electromagnetism breaks SU(3)L × SU(3)R, due to the different
charges of the quarks. In mass basis, the charge operator is,

Q =

 2/3
−1/3

2/3

 (63)

To add electromagnetism we need to modify the covariant derivative,

ψ̄i /Dψ → ψ̄L (∂µ − ieAµQL)ψL + ψ̄R (∂µ − ieAµQR)ψR... (64)

As numerical constants, QL and QR are the same. As symmetry breaking parameters,
they transform differently. QL is embedded in SU(3)L and says the left quarks feel EM.
QR is embedded in SU(3)R and says the right quarks feel EM. To maintain SU(3)L ×
SU(3)R invariance we must allow QL/R to rotate,

QL → LQLL
† QR → RQRR

† (65)

This tells us how to write our covariant derivative for our Σ field,

DµΣ = ∂µΣ + ieQLA
µΣ− ieAµΣQR (66)

since in this way, QLΣ → LQLΣR†, the same transformation as for ∂µΣ (and similarly
for QR). We have now successfully gave our pions a charge. How do we get a mass from
this charge? The lowest order invariant is,

e2f 4Tr
[
QLΣQRΣ†

]
(67)

[Q 7: What about the invariant, TrQLΣQRM?]
This term gives you,

∆m2
π = m2

π+ −m2
π0 = O(e2f 2) (68)
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One can show that the left and right handed chiral currents have the form,

jaµL =
f 2

()
TrT aΣ∂µΣ† (69)

jaµR =
f 2

()
TrT aΣ†∂µΣ (70)

The left handed chiral current governs, π+ → µν. This comes from four-fermi operator,

GF cos θcūLγ
µdLµ̄LγµνL (71)

You can replace the left handed current, ūLγ
µdL by the low energy chiral current, jaµL.

This is related to the pion decay constant.
Now recall the kinetic term for the goldstones,

f 2

4
Tr∂µΣ†∂µΣ ⊃ (∂µπ)2 + ()

[π, ∂µπ]

f 2
+ ... (72)

You can use this, as well as the mass term to calculate the pion decay constant,

A(ππ → ππ) = () s
f2 + ()m

2
π

f2
π

Notice that the interactions of the goldstone bosons are suppressed. In the limit the that
symmetry breaking is zero (mπ → 0), the amplitude is proportional to the momenta.
This is a general property of goldstone bosons and their shift symmetry.

We further note that the chiral Lagrangian is nonrenormalizable. So if we naively
compute the one loop correction to 2→ 2 scattering,

+

This four-point scattering amplitude is given by,

∼ s

f 2
π

+
s2

16π2f 4
π

log
s

µ2
(73)

We need a dimension 4 counterterm such as,

C.T.(µ) =
f 2

Λ2
Tr(δµΣ†∂µΣ)2 (74)

where the coefficient on the f 2 on the outside is necessary to correspond to the f depen-
dence in the original kinetic term [Q 8: I don’t understand where this comes form?] It
must be of this form since we need to get s2 dependence.

18



Notice however that the structure of the smplitude can be rewritten,

s

f 2
π

(
1 +

s

16π2f 2
π

log
s

µ2

)
+ C.T.(µ) (75)

The correction is suppressed by s/(4πfπ)2.
We should also ask ourselves, where does the scale Λ come from? Apriori we have

no idea. However, we do have a consistency arguement that tells us that Λ can’t be any
larger then a certain amount. This is done using naive dimensional analysiss (NDA).

The true amplitude is µ invariant. If we change the renormalization point we change
the amplitude in such a way that the physical amplitude remains invariant. If we take µ
and shift if by a factor of 2, then it shifts the difference contributions to the amplitude
such that it remains invariant:

s

16π2f 2
π

log
s

µ
↔ C.T.(µ) (76)

Suppose we say that we know that Λ = ∞. If this was the case we wouldn’t have a
dimension 4 term. But then µ becomes undefined. Shifting µ by order one means that
Λ goes from ∞ to 4πfπ. So even if we Λ happened to be infinity that if we change µ, Λ
would be less then this value.

NDA is the assumption that Λ ≈ 4πfπ and all other constants are assumed to be
O(1). The amazing thing that as silly as this assumption seems, it works well in most
cases.

4 Composite models

Consider a QCD-like theory. We’re going to recycle the notation we are used to for QCD.
We have, (

U
D

)
L

, SL,

(
U
D

)
R

, SR (77)

We’re going to choose both the left and right handed doublets to be 21/6 under the weak
interactions. This is the deviation from the SM. We are going to chose both SL and SR
to be 1−1/3.

This has an SU(3)L × SU(3)R approximate chiral symmetry. The T aL and T aR are
associated with the SU(2) weak interactions and T8,L and T8,R are associated with U(1)Y .

The reason for doing this is if you look at the kaons in,

π = πaT a =


π0

2
+ η√

2
π+
√

2
K+
√

2
π−√

2
− π0

2
η√
2

K0
√

2
K−√

2
K̄0
√

2
−η

3

 (78)

We see that they are doublets under the weak interactions with hypercharge, 1/2. The
kaons have the quantum numbers of the higgs. What was the kaons in QCD,(

K+

K0

)
(79)
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becomes the higgs doublet of the weak interactions, φ with 21/2. We’ve managed to create
a theory of a composite higgs with the correct qunatum numbers. What’s left is we need
to give it a VEV.

To do this we will detour into what’s known as vacuum misalignment. If we have some
strongly interacting theory with global symmetry, G, it will in general spontaneously
break into some subgroup, H.

H
SU(2)
×U(1)

H ′

What we mean by our unbroken group isn’t clear. Its possible that SU(2)× U(1) won’t
be properly contained within the broken group H. We’d idealy like to break such that
the only unbroken piece is the SU(2)×U(1). We’d like to add additional terms that shift
the vacuum. The easiest way to do this is to add an additional axial U(1):

SU(2)W × U(1)Y × U(1)A (80)

We now compute the low energy consequences of this.

4.1 Banks model

4.2 Little Higgs
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